scholarly journals Characterization of organic nitrogen in aerosols at a forest site in the southern Appalachian Mountains

2018 ◽  
Author(s):  
Xi Chen ◽  
Mingjie Xie ◽  
Michael D. Hays ◽  
Eric Edgerton ◽  
Donna Schwede ◽  
...  

Abstract. This study investigates the composition of organic particulate matter in a remote montane forest in the southeastern U.S., focusing on the role of organic nitrogen (N) in sulfur-containing secondary organic aerosol (nitrooxy-organosulfates) and aerosols associated with biomass burning (nitro-aromatics). Bulk water soluble organic N (WSON) represented ~ 14 % w/w of water soluble total N (WSTN) in PM2.5, on average, across seasonal measurement campaigns conducted in the spring, summer, and fall of 2015. Largest contributions of WSON to WSTN were observed in spring (~ 18 % w/w) and lowest in the fall (~ 10 % w/w). On average, identified nitro-aromatic and nitrooxy-organosulfate compounds accounted for a small fraction of WSON, ranging from ~ 1 % in spring to ~ 4 % in fall, though were observed to contribute as much as 28 % w/w of WSON in individual samples. Highest concentrations of oxidized organic N species occurred during summer (average of 0.65 ngN/m3) along with a greater relative abundance of higher generation oxygenated terpenoic acids, indicating an association with more aged aerosol. Highest concentrations of nitro-aromatics (e.g. nitrocatechol and methyl-nitrocatechol), levoglucosan, and aged SOA tracers were observed during fall, associated with aged biomass burning plumes. Nighttime nitrate radical chemistry is the most likely formation pathway for nitrooxy-organosulfates observed at this low NOx site (generally

2018 ◽  
Vol 18 (9) ◽  
pp. 6829-6846 ◽  
Author(s):  
Xi Chen ◽  
Mingjie Xie ◽  
Michael D. Hays ◽  
Eric Edgerton ◽  
Donna Schwede ◽  
...  

Abstract. This study investigates the composition of organic particulate matter in PM2.5 in a remote montane forest in the southeastern US, focusing on the role of organic nitrogen (N) in sulfur-containing secondary organic aerosol (nitrooxy-organosulfates) and aerosols associated with biomass burning (nitro-aromatics). Bulk water-soluble organic N (WSON) represented  ∼  14 % w∕w of water-soluble total N (WSTN) in PM2.5 on average across seasonal measurement campaigns conducted in the spring, summer, and fall of 2015. The largest contributions of WSON to WSTN were observed in spring ( ∼  18 % w∕w) and the lowest in the fall ( ∼  10 % w∕w). On average, identified nitro-aromatic and nitrooxy-organosulfate compounds accounted for a small fraction of WSON, ranging from  ∼  1 % in spring to  ∼  4 % in fall, though were observed to contribute as much as 28 % w∕w of WSON in individual samples that were impacted by local biomass burning. The highest concentrations of oxidized organic N species occurred during summer (average of 0.65 ng N m−3) along with a greater relative abundance of higher-generation oxygenated terpenoic acids, indicating an association with more aged aerosol. The highest concentrations of nitro-aromatics (e.g., nitrocatechol and methyl-nitrocatechol), levoglucosan, and aged SOA tracers were observed during fall, associated with aged biomass burning plumes. Nighttime nitrate radical chemistry is the most likely formation pathway for nitrooxy-organosulfates observed at this low NOx site (generally < 1 ppb). Isoprene-derived organosulfate (MW216, 2-methyltetrol derived), which is formed from isoprene epoxydiols (IEPOX) under low NOx conditions, was the most abundant individual organosulfate. Concentration-weighted average WSON ∕ WSOC ratios for nitro-aromatics + organosulfates + terpenoic acids were 1 order of magnitude lower than the overall aerosol WSON ∕ WSOC ratio, indicating the presence of other uncharacterized higher-N-content species. Although nitrooxy-organosulfates and nitro-aromatics contributed a small fraction of WSON, our results provide new insight into the atmospheric formation processes and sources of these largely uncharacterized components of atmospheric organic N, which also helps to advance the atmospheric models to better understand the chemistry and deposition of reactive N.


2019 ◽  
Vol 99 (4) ◽  
pp. 579-583
Author(s):  
X.M. Yang ◽  
C.F. Drury ◽  
W. Xu ◽  
M. Reeb ◽  
T. Oloya

Mid-infrared spectroscopy in the transmission mode was used to predict inorganic nitrogen (N), organic N, and total N in soil leachate. The developed predictions were accurate and robust for total N, NH4+, NO3−, inorganic N (NH4+ + NO3−), and organic N (total N − inorganic N) with high determination coefficients (R2 = 96.7 − 99.0) and residual prediction deviation (RPD = 5.47 − 9.96). The proposed method simultaneously estimates the concentrations of dissolved nitrogen species in soil leachates accurately and with significant savings in time, cost, and chemicals relevant to conventional methods.


1994 ◽  
Vol 74 (2) ◽  
pp. 201-206 ◽  
Author(s):  
F. L. Wang ◽  
J. R. Bettany

Freeze-thaw and flooding of usually well-drained soils occur in the spring in the prairie and boreal regions of Canada. We studied the impact of these conditions on nitrogen leaching in a Black Chernozemic soil (Udic Boroll). Soil samples, subjected to different treatments, were incubated for 12 wk in the laboratory and leached every 2 wk with 0.001 M CaCl2 solution. The cumulative leaching loss of total N (mg kg−1 soil) was reduced by freeze-thaw (76.0), flooding (41.4) and a superimposition of the two treatments (28.8) compared to the control (109). All treatments affected the distribution of the forms of N leached. The total loss of water soluble organic N (SON) and ammonium-N was in the order of flooded > flooded-freeze-thaw > freeze-thaw = control. In the leachates from the flooded treatments, SON accounted for 71.5–77.4% of the total N leached. Nitrate- and nitrite-N dominated the total leachable N in the unflooded treatments following an order of control > freeze-thaw > flooded = flooded-freeze-thaw. During the incubation, the Eh of the flooded soils decreased from 344 to −46 mV, compared to a variation in Eh from 355 to 301 mV for the unflooded soils. The maximum rate of leaching of organic nitrogen from the flooded treatment (0.53 mg N kg−1 d−1) coincided with a sharp decrease in Eh, from 131 to 42 mV. It is concluded that climatic events will have a significant impact on the dynamics of soil nitrogen. Flooding, in particular, may promote the loss of N in water soluble organic matter. Key words: Flooding, freeze-thaw, organic and inorganic nitrogen leaching, redox potential


1977 ◽  
Vol 57 (1) ◽  
pp. 155-158 ◽  
Author(s):  
S. H. NELSON

Total N applied during the main summer fertilizing program influenced the early green color return of Kentucky bluegrass (Poa pratensis L.) the following spring. Where inorganic N was the only source, there was a highly significant positive correlation between the total amount of N and the early green color return in the spring. The results were linear within the range tested (0.83–2.41 kg/100 m2 actual) and all treatments fell within the confidence limits. When two applications of organic N were used with one application of inorganic N, no trend was established within the range of 1.00–1.88 kg/100 m2. In these latter combinations, there was a response to varying amounts of inorganic N, but not with organic N. The high correlations and nature of the fit to the regression line would suggest a "luxury uptake" of inorganic N and overwinter storage by the turf grass similar to that reported in some woody plants. Since the plots receiving organic fertilizer went dormant early in the fall, such uptake is not likely and the early green color return would seem to be dependent on the bacterial release of N from the organic residues within the soil as the temperature increased.


2015 ◽  
Vol 15 (17) ◽  
pp. 9883-9896 ◽  
Author(s):  
C. M. Pavuluri ◽  
K. Kawamura ◽  
P. Q. Fu

Abstract. To better understand the sources of nitrogenous aerosols, particularly water-soluble organic nitrogen (WSON) and water-insoluble organic nitrogen (WION), in northeastern Asia, we measured total nitrogen (TN) and water-soluble total nitrogen (WSTN) as well as nitrogen isotope ratios (δ15N) of TN (δ15NTN) and WSTN (δ15NWSTN) in the total suspended particulate (TSP) samples collected from Sapporo, northern Japan, for a 1-year period. In general, WION was more abundant (126 ± 117 ng m−3), whereas WSON was 89.7 ± 80.6 ng m−3, accounting for 14 ± 11 % and 9.2 ± 7.3 % of TN, respectively. WSON peaked in late autumn to winter (maximum 288 ng m−3) and WION peaked in mid-spring to early summer (454 ng m−3). δ15NTN (21.9 ± 4.1 ‰) and δ15NWSTN (25.8 ± 8.2 ‰) showed peaks in summer with relatively high ratios in late autumn. Based on the seasonal variations in WSON and WION together with organic tracers, fossil fuel combustion and biomass burning are found to be two major sources of WSON, whereas emissions of biological particles and secondary formation by reactions of biogenic secondary organic species (carbonyls) with NH3 are suggested as an important source of WION. The seasonality of δ15NTN and δ15NWSTN, together with the comparisons to literature values, implies that chemical aging (including gas–particle partitioning) and biomass burning are the causes of the enhanced values in summer and autumn, respectively. This study demonstrates that contributions of aerosol N from fossil fuel combustion and biomass burning dominate in autumn and/or winter, whereas emission of terrestrial biological particles and secondary formation from biogenic hydrocarbons and subsequent chemical aging in the atmosphere are important in spring and/or summer in northeastern Asia.


2012 ◽  
Vol 9 (7) ◽  
pp. 8093-8109 ◽  
Author(s):  
J. N. Cape ◽  
Y. S. Tang ◽  
J. González-Benítez ◽  
M. Mitošinková ◽  
U. Makkonen ◽  
...  

Abstract. Measurements of total nitrogen and inorganic nitrogen in precipitation samples from NitroEurope sites across Europe permit the calculation of organic nitrogen concentrations and wet deposition, by difference. The contribution of organic N to total N in precipitation ranged from only a few % to around 40% across sites from Northern Finland to Italy, similar to results from previous individual studies. This paper presents the absolute and relative contributions of organic N to wet N deposition across Europe, and examines seasonal trends. There were only weak correlations with other solutes in precipitation. These simple statistics indicate that sources of organic N in precipitation vary across Europe, and that no single source is responsible. The organic N contributes to total N deposition, yet this input is rarely quantified in nitrogen budgets.


HortScience ◽  
1993 ◽  
Vol 28 (3) ◽  
pp. 189-191 ◽  
Author(s):  
Charles F. Mancino ◽  
Mohammad Barakat ◽  
Alison Maricic

This study examined the numbers of specific soil and thatch microbial populations in a U.S. Golf Association (USGA) specification sand-peat putting green of creeping bentgrass (Agrostis palustris Huds.) over 17 months. Changes caused by adding a water-soluble or bio-organic (water-insoluble, contains microbial inoculum) N source were examined. Thatch was found to contain 40 to 1600 times as many bacteria as the soil, 500 to 600 times as many fungi, and up to 100 times as many actinomycetes. Soil populations of nitrate- and nitrite-reducing anaerobes were similar and ranged from 103 to 105 per gram of dry soil. Adding the bio-organic N source increased soil fungal counts and thatch thickness when compared with the control (no N applied), but not as much as the water-soluble N source. The amendments had no effect on soil respiration, total organic carbon. or total N content.


2012 ◽  
Vol 9 (11) ◽  
pp. 4401-4409 ◽  
Author(s):  
J. N. Cape ◽  
Y. S. Tang ◽  
J. M. González-Ben&amp;iacute;ez ◽  
M. Mitošinková ◽  
U. Makkonen ◽  
...  

Abstract. Measurements of total nitrogen and inorganic nitrogen in precipitation samples from NitroEurope sites across Europe permit the calculation of organic nitrogen concentrations and wet deposition, by difference. The contribution of organic N to total N in precipitation ranged from only a few % to around 40% across 18 sites from northern Finland to Italy, similar to results from previous individual studies. This paper presents the absolute and relative contributions of organic N to wet N deposition across Europe, and examines seasonal trends. There were only weak correlations with other solutes in precipitation. These simple statistics indicate that sources of organic N in precipitation vary across Europe, and that no single source is responsible. The organic N contributes to total N deposition, yet this input is rarely quantified in nitrogen budgets.


Sign in / Sign up

Export Citation Format

Share Document