nitrogen budgets
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 36)

H-INDEX

41
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Rasmus Einarsson ◽  
Alberto Sanz-Cobena ◽  
Eduardo Aguilera ◽  
Gilles Billen ◽  
Josette Garnier ◽  
...  

2021 ◽  
Author(s):  
Jianbin Zhou ◽  
Xueqiang Zhu ◽  
Shimao Wang ◽  
Jingbo Gao ◽  
Peng Miao ◽  
...  

2021 ◽  
Author(s):  
Filip Moldan ◽  
Sara Jutterström ◽  
Johanna Stadmark ◽  
Anu Akujärvi ◽  
Martin Forsius ◽  
...  

2021 ◽  
Author(s):  
Kelvin H. Bates ◽  
Guy J. P. Burke ◽  
James D. Cope ◽  
Tran B. Nguyen

Abstract. The reaction of α-pinene with NO3 is an important sink of both α-pinene and NO3 at night in regions with mixed biogenic and anthropogenic emissions; however, there is debate on its importance for secondary organic aerosol (SOA) and reactive nitrogen budgets in the atmosphere. Previous experimental studies have generally observed low or zero SOA formation, often due to excessive [NO3] conditions. Here, we characterize the SOA and organic nitrogen formation from α-pinene + NO3 as a function of nitrooxy peroxy (nRO2) radical fates with HO2, NO, NO3, and RO2 in an atmospheric chamber. We show that SOA yields are not small when the nRO2 fate distribution in the chamber mimics that in the atmosphere, and the formation of pinene nitrooxy hydroperoxide (PNP) and related organonitrates in the ambient can be reproduced. Nearly all SOA from α-pinene + NO3 chemistry derives from the nRO2 + nRO2 pathway, which alone has an SOA mass yield of 65 (±9) %. Molecular composition analysis shows that particulate nitrates are a large (60–70 %) portion of the SOA, and that dimer formation is the primary mechanism of SOA production from α-pinene + NO3 under simulated nighttime conditions. We estimate an average nRO2 + nRO2 → ROOR branching ratio of ~18 %. Synergistic dimerization between nRO2 and RO2 derived from ozonolysis and OH oxidation also contribute to SOA formation, and should be considered in models. We report a 58 (±20) % molar yield of PNP from the nRO2 + HO2 pathway. Applying these laboratory constraints to model simulations of summertime conditions observed in the Southeast United States (where 80 % of α-pinene is lost via NO3 oxidation, leading to 20 % nRO2 + nRO2 and 45 % nRO2 + HO2) , we estimate yields of 13% SOA and 9% particulate nitrate by mass, and 26 % PNP by mole, from α-pinene + NO3 in the ambient. These results suggest that α-pinene + NO3 significantly contributes to the SOA budget, and likely constitutes a major removal pathway of reactive nitrogen from the nighttime boundary layer in mixed biogenic/anthropogenic areas.


Ecosystems ◽  
2021 ◽  
Author(s):  
Elisa Soana ◽  
Fabio Vincenzi ◽  
Nicolò Colombani ◽  
Micòl Mastrocicco ◽  
Elisa Anna Fano ◽  
...  

AbstractDenitrification is a key process buffering the environmental impacts of agricultural nitrate loads but, at present, remains the least understood and poorly quantified sink in nitrogen budgets at the watershed scale. The present work deals with a comprehensive and detailed analysis of nitrogen sources and sinks in the Burana–Volano–Navigabile basin, the southernmost portion of the Po River valley (Northern Italy), an intensively cultivated (> 85% of basin surface) low-lying landscape. Agricultural census data, extensive monitoring of surface–groundwater interactions, and laboratory experiments targeting N fluxes and pools were combined to provide reliable estimates of soil denitrification at the basin scale. In the agricultural soils of the basin, nitrogen inputs exceeded outputs by nearly 40% (~ 80 kg N ha−1 year−1), but this condition of potential N excess did not translate into widespread nitrate pollution. The general scarcity of inorganic nitrogen species in groundwater and soils indicated limited leakage and storage. Multiple pieces of evidence supported that soil denitrification was the process that needed to be introduced in the budget to explain the fate of the missing nitrogen. Denitrification was likely boosted in the soils of the studied basin, prone to waterlogged conditions and consequently oxygen-limited, owing to peculiar features such as fine texture, low hydraulic conductivity, and shallow water table. The present study highlighted the substantial contribution of soil denitrification to balancing nitrogen inputs and outputs in agricultural lowland basins, a paramount ecosystem function preventing eutrophication phenomena.


Nature Food ◽  
2021 ◽  
Author(s):  
Xin Zhang ◽  
Tan Zou ◽  
Luis Lassaletta ◽  
Nathaniel D. Mueller ◽  
Francesco N. Tubiello ◽  
...  

2021 ◽  
pp. 117633
Author(s):  
Xinpeng Jin ◽  
Nannan Zhang ◽  
Zhanqing Zhao ◽  
Zhaohai Bai ◽  
Lin Ma

2021 ◽  
pp. 117559
Author(s):  
Kentaro Hayashi ◽  
Hideaki Shibata ◽  
Azusa Oita ◽  
Kazuya Nishina ◽  
Akihiko Ito ◽  
...  

2021 ◽  
Author(s):  
Julia Wukovits ◽  
Nicolaas Glock ◽  
Johanna Nachbagauer ◽  
Petra Heinz ◽  
Wolfgang Wanek ◽  
...  

<p>Benthic foraminifera are highly abundant, ubiquitous marine protists, with many species feeding on microalgae or phytodetritus. Knowledge about carbon and nitrogen budgets and metabolic activities of benthic foraminifera can help to increase our understanding about their ecology and their role in aquatic biogeochemistry at the sediment-water interface. This can further increase their application as proxies for environmental changes. Shifts in the benthic foraminiferal communities of the Swedish Gullmars Fjord document the shift from well oxygenated bottom waters to seasonal hypoxia at its deepest location the Alsbäck Deep (125 m), during the last century.</p><p>So far there are only investigations available relating foraminiferal community composition with increased primary productivity and resulting hypoxia in this Fjord. In contrast, studies about the species-specific feeding ecology or food derived foraminiferal carbon and nitrogen fluxes are scarce.</p><p>Therefore, laboratory feeding experiments and respiration rate measurements were carried out with <em>Bulimina marginata</em>, <em>Cassidulina laevigata</em> and <em>Globobulima turgida</em>, abundant foraminifera in such environments, collected in August 2017.</p><p>Experiments were conducted to evaluate the carbon and nitrogen intake and turnover of dual (<sup>13</sup>C and <sup>15</sup>N) isotope labelled <em>Phaeodactylum tricornutum</em> detritus; detritus of a common diatom in the Gullmar Fjord. For the feeding experiments, foraminifera were incubated at 9.1°C in the dark, in sterile filtered seawater at ambient oxygen concentrations. The foraminifera were fed for a period of 24 hours and subsequently incubated without food for another 24 hours. After each incubation cycle, foraminiferal respiration rates were measured. The individuals were analyzed via Elemental Analyzer-Isotope Ratio Mass Spectroscopy to evaluate <sup>13</sup>C/<sup>12</sup>C and <sup>15</sup>N/<sup>14</sup>N ratios and their bulk content of organic carbon and nitrogen.</p><p>Additionally, we present carbon and nitrogen to volume ratios for the foraminifera <em>B. marginata</em>, <em>C. laevigata</em>, <em>G. turgida</em>, <em>G. auriculata</em> and <em>Nonionella turgida</em>, as derived from elemental analysis and light microscopy imaging.</p><p>The results show, that <em>B. marginata</em>, an opportunistic species associated with high fluxes of organic matter, had the highest rate of specific carbon and nitrogen intake and turnover. <em>Cassidulina laevigata</em>, a species that co-occurs with fresh phytodetritus and does not tolerate very low oxygen concentrations, showed lower carbon and nitrogen intake rates. <em>Globobulima turgida</em>, a denitrifying infaunal species that thrives under hypoxia, showed the lowest specific carbon and nitrogen intake and turnover rates. Respiration rates of all species did not depend on incubation with or without a food source. The foraminifera showed similar carbon and nitrogen densities per test volume across all species.</p><p>Overall this study helps to improve the knowledge on the nutritional ecology of the investigated species, demonstrating the close relation between feeding/metabolic rates and their environmental niche and highlighting the need to introduce foraminiferal data in future marine carbon and nitrogen flux models.</p>


2021 ◽  
Author(s):  
Jordi Escuer-Gatius ◽  
Krista Lõhmus ◽  
Merrit Shanskiy ◽  
Karin Kauer ◽  
Hanna Vahter ◽  
...  

<p>Agricultural activities can have several adverse impacts on the environment; such as important greenhouse gas (GHG) emissions. To implement effective mitigation measures and create effective policies, it is necessary to know the full carbon and nitrogen budgets of agro-ecosystems. However, very often, information regarding the pools or fluxes involved in the carbon and nitrogen cycles is limited, and essential complementary data needed for a proper interpretation is lacking.</p><p>This study aimed to quantify all the relevant pools and fluxes of a winter rapeseed, a widely spread crop in the Europe and Baltic regions. The N<sub>2</sub>O and CH<sub>4</sub> fluxes were measured weekly using the closed static chamber method from August 2016 to August 2017 in a winter rapeseed field in Central Estonia. Additionally, nutrient leaching and soil chemical parameters, as well as environmental parameters like soil moisture, electrical conductivity and temperature were monitored. At the end of the season, the rapeseed and weed biomasses were collected, weighed and analyzed. The remaining relevant fluxes in the N cycle were calculated using various non-empirical methods: NH<sub>3</sub> volatilization was estimated from slurry and environmental parameters, N deposition and NO<sub>x</sub> emissions were obtained from national reports, and N<sub>2</sub> emissions were calculated with the mass balance method. Regarding the C cycle, gross primary production (GPP) of the rapeseed field was also calculated by the mass balance method. Simultaneously, for comparison and validation purposes, GPP was estimated from the data provided by MOD17A2H v006 series from NASA, and N<sub>2</sub> was estimated from the measured emissions of N<sub>2</sub>O using the N<sub>2</sub>:N<sub>2</sub>O ratio calculated from the DAYCENT model equations.</p><p>N<sub>2</sub> emissions and GPP were the biggest fluxes in the N and C cycles, respectively. N<sub>2</sub> emissions were followed by N extracted with plant biomass in the N cycle, while in the carbon cycle soil and plant respiration and NPP were the highest fluxes after GPP. The carbon balance was positive at the soil level, with a net increase in soil carbon during the period, mainly due to GPP carbon capture. Contrarily, the nitrogen balance resulted in a net loss of N due to the losses related to gaseous emissions (N<sub>2</sub> and N<sub>2</sub>O) and leaching.</p><p>To conclude, it was possible to close the C and N budgets, despite the inherent difficulties of estimating the different C and N environmental pools and fluxes, and the uncertainties deriving from some of the fluxes estimations.</p>


Sign in / Sign up

Export Citation Format

Share Document