formation pathway
Recently Published Documents


TOTAL DOCUMENTS

248
(FIVE YEARS 108)

H-INDEX

37
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Yi-Dan Shi ◽  
Li-Qi Liu ◽  
Rong-Bin Liang ◽  
Qian-Min Ge ◽  
Qiu-Yu Li ◽  
...  

Abstract Purpose: Based on fMRI technology, we explored whether children with strabismus and amblyopia (SA) showed significant change in fractional amplitude of low-frequency fluctuation (fALFF) values in specific brain regions compared with healthy controls, and whether this change could point to the clinical manifestations and pathogenesis of children with strabismus to a certain extent.Methods: We enrolled 23 children with SA and same number matched healthy control in the ophthalmology department of the First Affiliated Hospital of Nanchang University, and the whole brain was scanned by rs-fMRI. The fALFF value of each brain area was derived to examine whether there is a statistical difference in the two groups. Meanwhile, ROC curve was made in a view to evaluate whether this difference proves useful as a diagnostic index. Finally, analyze whether changes in the fALFF value of some specific brain regions are related to clinical manifestations.Results: report to HCs children with SA presented a decreased fALFF values in left temporal pole: the superior temporal gyrus, right middle temporal gyrus, right superior frontal gyrus, right supplementary motor area. Meanwhile, they also showed higher fALFF values in specific brain areas, which included left precentral gyrus, left inferior Parietal, left Precuneus.Conclusion: Children with SA showed abnormal fALFF values in different brain regions. Most of these regions were allocated to the visual formation pathway. The eye movement-related pathway or other visual-related pathways, suggesting the pathological mechanism of the patient.


Author(s):  
Yu Wu ◽  
Qintao Sun ◽  
Yue Liu ◽  
Peiping Yu ◽  
Bingyun Ma ◽  
...  

Abstract Metallic lithium is considered a promising anode that can significantly increase the energy density of rechargeable lithium-based batteries, but problems like uncontrollable growth of lithium dendrites and formation of dead lithium impede its application. Recently, a low-concentration single-salt two-solvent electrolyte, 1M LiTFSI/FDMA/FEC, has attracted attention because a high coulombic efficiency can be achieved even after many cycles owing to the formation of a robust solid electrolyte interface (SEI). However, the reaction mechanism and SEI structure remain unclear, posing significant challenges for further improvement. Here, a hybrid ab initio and reactive force field (HAIR) method revealed the underlying reaction mechanisms and detailed formation pathway. 1 ns HAIR simulation provides critical information on the initial reduction mechanism of solvent (FDMA and FEC) and salt (LiTFSI). FDMA and FEC quickly decompose to provide F- that builds LiF as the major component of the inner layer of inorganic SEI, which has been demonstrated to protect Li anode. Decomposition of FDMA also leads to a significant nitrogen-containing composition, producing Li-N-C, LixN, and other organic components that increase the conductivity of SEI to increase performance. XPS analysis confirms evolution of SEI morphology consistent with available experiments. These results provide atomic insight into SEI formation, which should be beneficial for the rational design of advanced electrolytes


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7690
Author(s):  
Yingying Guo ◽  
Shuyan Yang

The spontaneous formation and fusion of raspberry vesicles was studied using the dissipative particle dynamics (DPD) method. The vesicles were formed through the self-assembly of amphiphilic E12O6F2 star terpolymers in selective solvent. E and F blocks are solvophobic and the O block is solvophilic. The shortest F block plays a major role in the formation of raspberry vesicles. Distinct vesicle formation mechanisms were observed at different polymer concentrations. At higher concentrations, vesicles form via the bending and closure of an oblate F-bump-E bilayer. At lower concentrations, the formation pathway contains: the initial formation of a vesicle with a core, the combination of such vesicles into cylindrical micelles, and the bending of the cylindrical micelles to form a hollow vesicle. In addition, raspberry vesicle fusion is regulated by F bumps through the continuous coalescence of them from apposed vesicle membranes. The contact area bends, followed by the formation of a fusion pore and a tilted inner layer. As the pore sealed, the hemifusion structure appears, which further restructures to form a vesicle. Our results provide guidance on understanding the dynamic processes of complex vesicles and biological membrane fusion.


2021 ◽  
Vol 162 (6) ◽  
pp. 286
Author(s):  
Tomas Stolker ◽  
Sebastiaan Y. Haffert ◽  
Aurora Y. Kesseli ◽  
Rob G. van Holstein ◽  
Yuhiko Aoyama ◽  
...  

Abstract GQ Lup B is a young and accreting, substellar companion that appears to drive a spiral arm in the circumstellar disk of its host star. We report high-contrast imaging observations of GQ Lup B with VLT/NACO at 4–5 μm and medium-resolution integral field spectroscopy with VLT/MUSE. The optical spectrum is consistent with an M9 spectral type, shows characteristics of a low-gravity atmosphere, and exhibits strong Hα emission. The H − M′ color is ≳1 mag redder than field dwarfs with similar spectral types, and a detailed analysis of the spectral energy distribution (SED) from optical to mid-infrared wavelengths reveals excess emission in the L′, NB4.05, and M′ bands. The excess flux is well described by a blackbody component with T disk ≈ 460 K and R disk ≈ 65 R J and is expected to trace continuum emission from small grains in a protolunar disk. We derive an extinction of A V ≈ 2.3 mag from the broadband SED with a suspected origin in the vicinity of the companion. We also combine 15 yr of astrometric measurements and constrain the mutual inclination with the circumstellar disk to 84 ± 9 deg, indicating a tumultuous dynamical evolution or a stellar-like formation pathway. From the measured Hα flux and the estimated companion mass, M p ≈ 30 M J, we derive an accretion rate of M ̇ ≈ 10 − 6.5 M J yr − 1 . We speculate that the disk is in a transitional stage in which the assembly of satellites from a pebble reservoir has opened a central cavity while GQ Lup B is in the final stages of its formation.


2021 ◽  
Vol 923 (1) ◽  
pp. 48
Author(s):  
Jacqueline K. Faherty ◽  
Jonathan Gagné ◽  
Mark Popinchalk ◽  
Johanna M. Vos ◽  
Adam J. Burgasser ◽  
...  

Abstract Through the Backyard Worlds: Planet 9 citizen science project we discovered a late-type L dwarf co-moving with the young K0 star BD+60 1417 at a projected separation of 37″ or 1662 au. The secondary—CWISER J124332.12+600126.2 (W1243)—is detected in both the CatWISE2020 and 2MASS reject tables. The photometric distance and CatWISE proper motion both match that of the primary within ∼1σ and our estimates for a chance alignment yield a zero probability. Follow-up near-infrared spectroscopy reveals W1243 to be a very red 2MASS (J–K s = 2.72), low surface gravity source that we classify as L6–L8γ. Its spectral morphology strongly resembles that of confirmed late-type L dwarfs in 10–150 Myr moving groups as well as that of planetary mass companions. The position on near- and mid-infrared color–magnitude diagrams indicates the source is redder and fainter than the field sequence, a telltale sign of an object with thick clouds and a complex atmosphere. For the primary we obtained new optical spectroscopy and analyzed all available literature information for youth indicators. We conclude that the Li i abundance, its loci on color–magnitude and color–color diagrams, and the rotation rate revealed in multiple TESS sectors are all consistent with an age of 50–150 Myr. Using our re-evaluated age of the primary and the Gaia parallax, along with the photometry and spectrum for W1243, we find T eff = 1303 ± 31 K, log g = 4.3 ± 0.17 cm s−2, and a mass of 15 ± 5 M Jup. We find a physical separation of ∼1662 au and a mass ratio of ∼0.01 for this system. Placing it in the context of the diverse collection of binary stars, brown dwarfs, and planetary companions, the BD+60 1417 system falls in a sparsely sampled area where the formation pathway is difficult to assess.


2021 ◽  
Vol 176 (12) ◽  
Author(s):  
Ge Bian ◽  
Olga Ageeva ◽  
Aleksander Rečnik ◽  
Gerlinde Habler ◽  
Rainer Abart

AbstractPlagioclase hosted needle- and lath-shaped magnetite micro-inclusions from oceanic gabbro dredged at the mid-Atlantic ridge at 13° 01–02′ N, 44° 52′ W were investigated to constrain their formation pathway. Their genesis is discussed in the light of petrography, mineral chemistry, and new data from transmission electron microscopy (TEM). The magnetite micro-inclusions show systematic crystallographic and shape orientation relationships with the plagioclase host. Direct TEM observation and selected area electron diffraction (SAED) confirm that the systematic orientation relations are due to the alignment of important oxygen layers between the magnetite micro-inclusions and the plagioclase host, a hypothesis made earlier based on electron backscatter diffraction data. Precipitation from Fe-bearing plagioclase, which became supersaturated with respect to magnetite due to interaction with a reducing fluid, is inferred to be the most likely formation pathway. This process probably occurred without the supply of Fe from an external source but required the out-diffusion of oxygen from the plagioclase to facilitate partial reduction of the ferric iron originally contained in the plagioclase. The magnetite micro-inclusions contain oriented lamellae of ilmenite, the abundance, shape and size of which indicate high-temperature exsolution from Ti-rich magnetite constraining the precipitation of the magnetite micro-inclusions to temperatures in excess of ~ 600 °C. This is above the Curie temperature of magnetite, and the magnetic signature of the magnetite-bearing plagioclase grains must, therefore, be considered as the thermoremanent magnetization.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7032
Author(s):  
Leo Štefan ◽  
Ana Čikoš ◽  
Robert Vianello ◽  
Ivica Đilović ◽  
Dubravka Matković-Čalogović ◽  
...  

Spontaneous S-alkylation of methimazole (1) with 1,2-dichloroethane (DCE) into 1,2-bis[(1-methyl-1H-imidazole-2-yl)thio]ethane (2), that we have described recently, opened the question about its formation pathway(s). Results of the synthetic, NMR spectroscopic, crystallographic and computational studies suggest that, under given conditions, 2 is obtained by direct attack of 1 on the chloroethyl derivative 2-[(chloroethyl)thio]-1-methyl-1H-imidazole (3), rather than through the isolated stable thiiranium ion isomer, i.e., 7-methyl-2H, 3H, 7H-imidazo[2,1-b]thiazol-4-ium chloride (4a, orthorhombic, space group Pnma), or in analogy with similar reactions, through postulated, but unproven intermediatethiiranium ion 5. Furthermore, in the reaction with 1, 4a prefers isomerization to the N-chloroethyl derivative, 1-chloroethyl-2,3-dihydro-3-methyl-1H-imidazole-2-thione (7), rather than alkylation to 2, while 7 further reacts with 1 to form 3-methyl-1-[(1-methyl-imidazole-2-yl)thioethyl]-1H-imidazole-2-thione (8, monoclinic, space group P 21/c). Additionally, during the isomerization of 3, the postulated intermediate thiiranium ion 5 was not detected by chromatographic and spectroscopic methods, nor by trapping with AgBF4. However, trapping resulted in the formation of the silver complex of compound 3, i.e., bis-{2-[(chloroethyl)thio]-1-methyl-1H-imidazole}-silver(I)tetrafluoroborate (6, monoclinic, space group P 21/c), which cyclized upon heating at 80 °C to 7-methyl-2H, 3H, 7H-imidazo[2,1-b]thiazol-4-ium tetrafluoroborate (4b, monoclinic, space group P 21/c). Finally, we observed thermal isomerization of both 2 and 2,3-dihydro-3-methyl-1-[(1-methyl-1H-imidazole-2-yl)thioethyl]-1H-imidazole-2-thione (8), into 1,2-bis(2,3-dihydro-3-methyl-1H-imidazole-2-thione-1-yl)ethane (9), which confirmed their structures.


2021 ◽  
Vol 118 (47) ◽  
pp. e2005219118
Author(s):  
Min Song ◽  
Florence Schubotz ◽  
Matthias Y. Kellermann ◽  
Christian T. Hansen ◽  
Wolfgang Bach ◽  
...  

A mechanistic understanding of formation pathways of low-molecular-weight hydrocarbons is relevant for disciplines such as atmospheric chemistry, geology, and astrobiology. The patterns of stable carbon isotopic compositions (δ13C) of hydrocarbons are commonly used to distinguish biological, thermogenic, and abiotic sources. Here, we report unusual isotope patterns of nonmethane hydrocarbons in hydrothermally heated sediments of the Guaymas Basin; these nonmethane hydrocarbons are notably 13C-enriched relative to sedimentary organic matter and display an isotope pattern that is reversed relative to thermogenic hydrocarbons (i.e., δ13C ethane > δ13C propane > δ13C n-butane > δ13C n-pentane). We hypothesized that this pattern results from abiotic reductive conversion of volatile fatty acids, which were isotopically enriched due to prior equilibration of their carboxyl carbon with dissolved inorganic carbon. This hypothesis was tested by hydrous pyrolysis experiments with isotopically labeled substrates at 350 °C and 400 bar that demonstrated 1) the exchange of carboxyl carbon of C2 to C5 volatile fatty acids with 13C-bicarbonate and 2) the incorporation of 13C from 13C-2–acetic acid into ethane and propane. Collectively, our results reveal an abiotic formation pathway for nonmethane hydrocarbons, which may be sufficiently active in organic-rich, geothermally heated sediments and petroleum systems to affect isotopic compositions of nonmethane hydrocarbons.


2021 ◽  
Author(s):  
Dana Fuerst ◽  
Bar Shermeister ◽  
Tali Mandel ◽  
Sariel Hubner

Global crop production is being challenged by rapid population growth, declining natural resources, and dramatic climatic turnovers. These challenges have prompted plant breeders to explore new ventures to enhance adaptation and sustainability in crops. One intriguing approach to make agriculture more sustainable is by turning annual systems into perennial which offers many economic and biodiversity-friendly benefits. Previous attempts to develop a perennial cereal crop employed a classical breeding approach and extended over a long period with limited success. Thus, elucidating the genetic basis of perenniality at the molecular level can accelerate the breeding process. Here, we investigated the genetic basis of bulb formation in the barley congener species Hordeum bulbosum by elucidating the transcripts presence/absence variation compared with other annual species in the Poaceae, and a differential expression analysis of meristem tissues. The PAV analysis recaptured the expected phylogeny and indicated that H. bulbosum is enriched with developmental and disease responsive genes that are absent among annual species. Next, the abundance of transcripts was quantified and allowed to identify differentially expressed genes that are associated with bulb formation pathways in addition to major circadian clock genes that regulate flowering. A first model for the bulb formation pathway is suggested and include developmental and starch biosynthesis genes. To the best of our knowledge this is the first transcriptome developed for H. bulbosum and the first attempt to describe the regulation of bulb initiation in cereals at the molecular level.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pamina Kazman ◽  
Ramona M. Absmeier ◽  
Harald Engelhardt ◽  
Johannes Buchner

AbstractIn antibody light chain (AL) amyloidosis, overproduced light chain (LC) fragments accumulate as fibrils in organs and tissues of patients. In vitro, AL fibril formation is a slow process, characterized by a pronounced lag phase. The events occurring during this lag phase are largely unknown. We have dissected the lag phase of a patient-derived LC truncation and identified structural transitions that precede fibril formation. The process starts with partial unfolding of the VL domain and the formation of small amounts of dimers. This is a prerequisite for the formation of an ensemble of oligomers, which are the precursors of fibrils. During oligomerization, the hydrophobic core of the LC domain rearranges which leads to changes in solvent accessibility and rigidity. Structural transitions from an anti-parallel to a parallel β-sheet secondary structure occur in the oligomers prior to amyloid formation. Together, our results reveal a rate-limiting multi-step mechanism of structural transitions prior to fibril formation in AL amyloidosis, which offers, in the long run, opportunities for therapeutic intervention.


Sign in / Sign up

Export Citation Format

Share Document