scholarly journals Supplementary material to "Aerosol distribution in the northern Gulf of Guinea: local anthropogenic sources, long-range transport and the role of coastal shallow circulations"

Author(s):  
Cyrille Flamant ◽  
Adrien Deroubaix ◽  
Patrick Chazette ◽  
Joel Brito ◽  
Marco Gaetani ◽  
...  
2018 ◽  
Vol 18 (16) ◽  
pp. 12363-12389 ◽  
Author(s):  
Cyrille Flamant ◽  
Adrien Deroubaix ◽  
Patrick Chazette ◽  
Joel Brito ◽  
Marco Gaetani ◽  
...  

Abstract. The complex vertical distribution of aerosols over coastal southern West Africa (SWA) is investigated using airborne observations and numerical simulations. Observations were gathered on 2 July 2016 offshore of Ghana and Togo, during the field phase of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa project. This was the only flight conducted over the ocean during which a downward-looking lidar was operational. The aerosol loading in the lower troposphere includes emissions from coastal cities (Accra, Lomé, Cotonou, and Lagos) as well as biomass burning aerosol and dust associated with long-range transport from central Africa and the Sahara, respectively. Our results indicate that the aerosol distribution on this day is impacted by subsidence associated with zonal and meridional regional-scale overturning circulations associated with the land–sea surface temperature contrast and orography over Ghana and Togo, as typically observed on hot, cloud-free summer days such as 2 July 2016. Furthermore, we show that the zonal circulation evidenced on 2 July is a persistent feature over the Gulf of Guinea during July 2016. Numerical tracer release experiments highlight the dominance of aged emissions from Accra on the observed pollution plume loadings over the ocean, in the area of aircraft operation. The contribution of aged emission from Lomé and Cotonou is also evident above the marine boundary layer. Given the general direction of the monsoon flow, the tracer experiments indicate no contribution from Lagos emissions to the atmospheric composition of the area west of Cotonou, where our airborne observations were gathered. The tracer plume does not extend very far south over the ocean (i.e. less than 100 km from Accra), mostly because emissions are transported northeastward near the surface over land and westward above the marine atmospheric boundary layer. The latter is possible due to interactions between the monsoon flow, complex terrain, and land–sea breeze systems, which support the vertical mixing of the urban pollution. This work sheds light on the complex – and to date undocumented – mechanisms by which coastal shallow circulations can distribute atmospheric pollutants over the densely populated SWA region.


2018 ◽  
Author(s):  
Cyrille Flamant ◽  
Adrien Deroubaix ◽  
Patrick Chazette ◽  
Joel Brito ◽  
Marco Gaetani ◽  
...  

Abstract. The complex vertical distribution of aerosols over coastal southern West Africa (SWA) is investigated using airborne observations and numerical simulations. Observations were gathered on 2 July 2016 offshore of Ghana and Togo, during the field phase of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa project. The aerosol loading in the lower troposphere includes emissions from coastal cities (Accra, Lomé, Cotonou and Lagos) as well as biomass burning aerosol and dust associated with long-range transport from Central Africa and the Sahara, respectively. Our results indicate that the aerosol distribution is impacted by subsidence associated with zonal and meridional regional scale overturning circulations associated with the land-sea surface temperature contrast and orography over Ghana and Togo. Numerical tracer release experiments highlight the dominance of aged emissions from Accra on the observed pollution plume loadings over the ocean. The contribution of aged emission from Lomé and Cotonou is also evident above the marine boundary layer. Lagos emissions do not play a role for the area west of Cotonou. The tracer plume does not extend very far south over the ocean (i.e. less than 100 km from Accra), mostly because emissions are transported northeastward near the surface over land and westward above the marine atmospheric boundary layer. The latter is possible due to interactions between the monsoon flow, complex terrain and land-sea breeze systems, which support the vertical mixing of the urban pollution. This work sheds light on the complex – and to date undocumented – mechanisms by which coastal shallow circulations distribute atmospheric pollutants over the densely populated SWA region.


2014 ◽  
Vol 14 (1) ◽  
pp. 440-450 ◽  
Author(s):  
Anandamay Adak ◽  
Abhijit Chatterjee ◽  
Ajay Kumar Singh ◽  
Chirantan Sarkar ◽  
Sanjay Ghosh ◽  
...  

Author(s):  
Hervé Petetin ◽  
Bastien Sauvage ◽  
Mark Parrington ◽  
Hannah Clark ◽  
Alain Fontaine ◽  
...  

<p><strong>Abstract.</strong> This study investigates the role of biomass burning and long-range transport in the anomalies of carbon monoxide (CO) regularly observed along the tropospheric vertical profiles measured in the framework of IAGOS. Considering the high interannual variability of biomass burning emissions and the episodic nature of pollution long-range transport, one strength of this study is the amount of data taken into account, namely 30,000 vertical profiles at 9 clusters of airports in Europe, North America, Asia, India and southern Africa over the period 2002&amp;ndash;2017. </p> <p> As a preliminary, a brief overview of the spatio-temporal variability, latitudinal distribution, interannual variability and trends of biomass burning CO emissions from 14 regions is provided. The distribution of CO mixing ratios at different levels of the troposphere is also provided based on the entire IAGOS database (125 million CO observations). </p> <p> This study focuses on the free troposphere (altitudes above 2<span class="thinspace"></span>km) where the long-range transport of pollution is favoured. Anomalies at a given airport cluster are here defined as departures from the local seasonally-averaged climatological vertical profile. The intensity of these anomalies varies significantly depending on the airport, with maximum (minimum) CO anomalies of 110&amp;ndash;150 (48)<span class="thinspace"></span>ppbv in Asia (Europe). Looking at the seasonal variation of the frequency of occurrence, the 25<span class="thinspace"></span>% strongest CO anomalies appears reasonably well distributed along the year, in contrast to the 5<span class="thinspace"></span>% or 1<span class="thinspace"></span>% strongest anomalies that exhibit a strong seasonality with for instance more frequent anomalies during summertime in northern United-States, during winter/spring in Japan, during spring in South-east China, during the non-monsoon seasons in south-east Asia and south India, and during summer/fall at Windhoek, Namibia. Depending on the location, these strong anomalies are observed in different parts of the free troposphere. </p> <p> In order to investigate the role of biomass burning emissions in these anomalies, we used the SOFT-IO v1.0 IAGOS added-value products that consist of FLEXPART 20-days backward simulations along all IAGOS aircraft trajectories, coupled with anthropogenic (MACCity) and biomass burning (GFAS) CO emission inventories and vertical injections. SOFT-IO estimates the contribution (in ppbv) of the recent (less than 20 days) primary worldwide CO emissions, tagged per source region. Biomass burning emissions are found to play an important role in the strongest CO anomalies observed at most airport clusters. The regional tags indicate a large contribution from boreal regions at airport clusters in Europe and North America during summer season. In both Japan and south India, the anthropogenic emissions dominate all along the year, except for the strongest summertime anomalies observed in Japan that are due to Siberian fires. The strongest CO anomalies at airport clusters located in south-east Asia are induced by fires burning during spring in south-east Asia and during fall in equatorial Asia. In southern Africa, the Windhoek airport was mainly impacted by fires in southern hemisphere Africa and South America. </p> <p> To our knowledge, no other studies have used such a large dataset of in situ vertical profiles for deriving a climatology of the impact of biomass burning versus anthropogenic emissions on the strongest CO anomalies observed in the troposphere, in combination with information on the source regions. This study therefore provides both qualitative and quantitative information for interpreting the highly variable CO vertical distribution in several regions of interest.</p>


2008 ◽  
Vol 8 (20) ◽  
pp. 6281-6295 ◽  
Author(s):  
S. Saarikoski ◽  
H. Timonen ◽  
K. Saarnio ◽  
M. Aurela ◽  
L. Järvi ◽  
...  

Abstract. A major fraction of fine particle matter consists of organic carbon (OC) but its origin is still inadequately known. In this study the sources of OC were investigated in the northern European urban environment in Helsinki, Finland. Measurements were carried out over one year and they included both filter (PM1) and online methods. From the filter samples OC, elemental carbon (EC), water-soluble OC (WSOC), levoglucosan and major ions were analyzed. Filter data together with the concentrations of inorganic gases were analyzed by Positive matrix factorization (PMF) in order to find the sources of OC (and WSOC) on an annual as well as on a seasonal basis. In order to study the diurnal variation of sources, OC and EC were measured by a semicontinuous OC/EC analyzer and major ions were determined by a Particle-into-Liquid Sampler coupled to ion chromatographs. According to PMF, OC concentrations were impacted by four sources: biomass combustion, traffic, long-range transport and secondary production. On an annual basis the OC concentration was dominated by secondary organic aerosol (SOA). Its contribution to OC was as high as 64% in summer, which besides anthropogenic sources may also result from the large biogenic volatile organic carbon (VOC) emissions in the boreal region. In winter biomass combustion constituted the largest fraction in OC due to domestic wood combustion for heating purposes. Traffic contributed to OC from 15 to 27%. Regarding the diurnal variation, the contribution from traffic was higher from 08:00 to 18:00 on weekdays than on weekends. The contribution from long-range transport to OC was 24% on average. All four sources also influenced the WSOC concentrations, however, the contribution of SOA was significantly larger for WSOC than OC.


Sign in / Sign up

Export Citation Format

Share Document