scholarly journals Characterization of aerosol properties at Cyprus, focusing on cloud condensation nuclei and ice nucleating particles

Author(s):  
Xianda Gong ◽  
Heike Wex ◽  
Thomas Müller ◽  
Alfred Wiedensohler ◽  
Kristina Höhler ◽  
...  

Abstract. As part of the A-LIFE (Absorbing aerosol layers in a changing climate: aging, lifetime and dynamics) campaign, ground-based measurements were carried out in Paphos, Cyprus, for characterizing the abundance, properties and sources of aerosol particles in general, and cloud condensation nuclei (CCN) and ice nucleating particles (INP), in particular. New particle formation (NPF) events with subsequent growth of the particles into the CCN size range were observed. Aitken mode particles featured κ values of 0.21 to 0.29, indicating the presence of organic materials. Accumulation mode particles featured a higher hygroscopicity parameter, with a median κ value of 0.57, suggesting the presence of sulfate. A clear downward trend of κ with increasing supersaturation and decreasing dcrit was found. Super-micron particles originated mainly from sea spray aerosol (SSA) and partly from mineral dust. INP concentrations (NINP) were measured in the temperature range from −6.5 to −26.5 ℃, using two freezing array type instruments. NINP at a particular temperature span around 1 order of magnitude below −20 ℃, and about 2 orders of magnitude at warmer temperatures (T > −18 ℃). Few samples showed elevated concentrations at temperatures > −15 ℃, which suggests a significant contribution of biological particles to the INP population, which possibly could originate from Cyprus. Both measured temperature spectra and NINP probability density functions (PDFs) indicate that the observed INP (ice active in the temperature range between −15 and −20 ℃) mainly originate from long-range transport. There was no correlation between NINP and particle number concentration in the size range > 500 nm (N> 500 nm). Parameterizations based on N> 500 nm were found to overestimate NINP by about 1 to 2 orders of magnitude. There was also no correlation between NINP and particle surface area concentration. The ice active surface site density (ns) for the anthropogenically polluted aerosol encountered in this study is about 1 to 3 orders of magnitude lower than the ns found for dust aerosol particles in previous studies. This suggests that observed NINP-PDFs as those derived here could be a better choice for modelling NINP if the aerosol particle composition is unknown or uncertain.

2019 ◽  
Vol 19 (16) ◽  
pp. 10883-10900 ◽  
Author(s):  
Xianda Gong ◽  
Heike Wex ◽  
Thomas Müller ◽  
Alfred Wiedensohler ◽  
Kristina Höhler ◽  
...  

Abstract. As part of the A-LIFE (Absorbing aerosol layers in a changing climate: aging, LIFEtime and dynamics) campaign, ground-based measurements were carried out in Paphos, Cyprus, to characterize the abundance, properties, and sources of aerosol particles in general and cloud condensation nuclei (CCN) and ice-nucleating particles (INP) in particular. New particle formation (NPF) events with subsequent growth of the particles into the CCN size range were observed. Aitken mode particles featured κ values of 0.21 to 0.29, indicating the presence of organic materials. Accumulation mode particles featured a higher hygroscopicity parameter, with a median κ value of 0.57, suggesting the presence of sulfate and maybe sea salt particles mixed with organic carbon. A clear downward trend of κ with increasing supersaturation and decreasing dcrit was found. Super-micron particles originated mainly from sea-spray aerosol (SSA) and partly from mineral dust. INP concentrations (NINP) were measured in the temperature range from −6.5 to −26.5 ∘C, using two freezing array-type instruments. NINP at a particular temperature span around 1 order of magnitude below −20 ∘C and about 2 orders of magnitude at warmer temperatures (T>-18 ∘C). Few samples showed elevated concentrations at temperatures >-15 ∘C, which suggests a significant contribution of biological particles to the INP population, which possibly could originate from Cyprus. Both measured temperature spectra and NINP probability density functions (PDFs) indicate that the observed INP (ice active in the temperature range between −15 and −20 ∘C) mainly originate from long-range transport. There was no correlation between NINP and particle number concentration in the size range >500 nm (N>500 nm). Parameterizations based on N>500 nm were found to overestimate NINP by about 1 to 2 orders of magnitude. There was also no correlation between NINP and particle surface area concentration. The ice active surface site density (ns) for the polluted aerosol encountered in the eastern Mediterranean in this study is about 1 to 3 orders of magnitude lower than the ns found for dust aerosol particles in previous studies. This suggests that observed NINP PDFs such as those derived here could be a better choice for modeling NINP if the aerosol particle composition is unknown or uncertain.


2011 ◽  
Vol 11 (21) ◽  
pp. 11023-11039 ◽  
Author(s):  
S. S. Gunthe ◽  
D. Rose ◽  
H. Su ◽  
R. M. Garland ◽  
P. Achtert ◽  
...  

Abstract. Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate. CCN properties were measured and characterized during the CAREBeijing-2006 campaign at a regional site south of the megacity of Beijing, China. Size-resolved CCN efficiency spectra recorded for a supersaturation range of S=0.07% to 0.86% yielded average activation diameters in the range of 190 nm to 45 nm. The corresponding effective hygroscopicity parameters (κ) exhibited a strong size dependence ranging from ~0.25 in the Aitken size range to ~0.45 in the accumulation size range. The campaign average value (κ =0.3 ± 0.1) was similar to the values observed and modeled for other populated continental regions. The hygroscopicity parameters derived from the CCN measurements were consistent with chemical composition data recorded by an aerosol mass spectrometer (AMS) and thermo-optical measurements of apparent elemental and organic carbon (EC and OC). The CCN hygroscopicity and its size dependence could be parameterized as a function of only AMS based organic and inorganic mass fractions (forg, finorg) using the simple mixing rule κp ≈ 0.1 · forg + 0.7 · finorg. When the measured air masses originated from the north and passed rapidly over the center of Beijing (fresh city pollution), the average particle hygroscopicity was reduced (κ = 0.2 ± 0.1), which is consistent with enhanced mass fractions of organic compounds (~50%) and EC (~30%) in the fine particulate matter (PM1). Moreover, substantial fractions of externally mixed weakly CCN-active particles were observed at low supersaturation (S=0.07%), which can be explained by the presence of freshly emitted soot particles with very low hygroscopicity (κ < 0.1). Particles in stagnant air from the industrialized region south of Beijing (aged regional pollution) were on average larger and more hygroscopic, which is consistent with enhanced mass fractions (~60%) of soluble inorganic ions (mostly sulfate, ammonium, and nitrate). Accordingly, the number concentration of CCN in aged air from the megacity region was higher than in fresh city outflow ((2.5–9.9) × 103 cm−3 vs. (0.4–8.3) × 103 cm−3 for S=0.07–0.86%) although the total aerosol particle number concentration was lower (1.2 × 104 cm−3 vs. 2.3 × 104 cm−3). A comparison with related studies suggests that the fresh outflow from Chinese urban centers generally may contain more, but smaller and less hygroscopic aerosol particles and thus fewer CCN than the aged outflow from megacity regions.


2011 ◽  
Vol 11 (3) ◽  
pp. 9959-9997
Author(s):  
S. S. Gunthe ◽  
D. Rose ◽  
H. Su ◽  
R. M. Garland ◽  
P. Achtert ◽  
...  

Abstract. Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate. CCN properties were measured and characterized during the CAREBeijing-2006 campaign at a regional site south of the megacity of Beijing, China. Size-resolved CCN efficiency spectra recorded for a supersaturation range of S = 0.07% to 0.86% yielded average activation diameters in the range of 190 nm to 45 nm. The corresponding effective hygroscopicity parameters (κ) exhibited a strong size dependence ranging from ~0.25 in the Aitken size range to ~0.45 in the accumulation size range. The campaign average value (κ = 0.3 ± 0.1) was similar to the values observed and modeled for other populated continental regions. The hygroscopicity parameters derived from the CCN measurements were consistent with chemical composition data recorded by an aerosol mass spectrometer (AMS) and thermo-optical measurements of apparent elemental and organic carbon (ECa and OC). The CCN hygroscopicity and its size dependence could be parameterized as a function of AMS based organic and inorganic mass fractions using the simple mixing rule κ p ≈ 0.1 · forg + 0.7 · finorg. When the measured air masses originated from the north and passed rapidly over the center of Beijing (fresh city pollution), the average particle hygroscopicity was reduced (κ = 0.2 ± 0.1), which is consistent with enhanced mass fractions of organic compounds (~50%) and ECa (~30%) in the fine particulate matter (PM1). Moreover, substantial fractions of externally mixed weakly CCN-active particles were observed at low supersaturation (S = 0.07%), which can be explained by the presence of freshly emitted soot particles with very low hygroscopicity (κ<0.1). Particles in stagnant air from the industrialized region south of Beijing (aged regional pollution) were on average larger and more hygroscopic, which is consistent with enhanced mass fractions (~60%) of soluble inorganic ions (mostly sulfate, ammonium, and nitrate). Accordingly, the number concentration of CCN in aged air from the megacity region was higher than in fresh city outflow ((2.5–9.9) × 103 cm−3 vs. (0.4–8.3) × 103 cm−3) although the total aerosol particle number concentration was lower (1.2 × 104 cm−3 vs. 2.3 × 104 cm−3). A comparison with related studies suggests that the fresh outflow from Chinese urban centers generally may contain more, but smaller and less hygroscopic aerosol particles and thus fewer CCN than the aged outflow from megacity regions.


2014 ◽  
Vol 14 (10) ◽  
pp. 14889-14931 ◽  
Author(s):  
F. Zhang ◽  
Z. Li ◽  
R. J. Li ◽  
L. Sun ◽  
C. Zhao ◽  
...  

Abstract. Aerosol hygroscopicity and cloud condensation nuclei (CCN) activity under clean conditions and polluted events are investigated based on size-resolved CCN and aerosol chemical composition observations during the Aerosol-CCN-Cloud Closure Experiment (AC3Exp) campaign conducted at Xianghe, China in summer 2013. About 14–22% of aerosol particles during the campaign are of externally mixed CCN-inactive particles that cannot serve as CCN under atmospheric typical supersaturation (SS) of ∼0.4%. A high sensitivity of Maximum activation fractions (MAF) to SS under polluted conditions has been observed. The pollutants can cause a maximum MAF decrease of 25–30% (at SS = 0.08%). Hygroscopicity parameter kappa (κ) are about 16–35% lower under polluted conditions than under clean conditions for particles in accumulation size range (80–180 nm); however, for particles in nucleation or Aitken size range (30–60 nm), κ is slightly higher under polluted conditions. A non-parallel observation (NPO) CCN closure study shows low correlation coefficient between estimated and observed CCN number concentrations (NCCN). About 30–40% uncertainties in NCCN prediction are associated with the changes of particle composition. A case study shows that CCN activation ratio (AR) increased with the increase of condensation nuclei (CN) number concentrations (NCN) in relatively clean days. In the case, AR exhibited good correlation with κchem, which is calculated from chemical volume fractions, due to particles mainly composed of soluble inorganics. On the contrary, AR declined with increase of NCN during polluted events when particles composed mostly of organics. Meanwhile, AR is closely related to f44, which is the fraction of total organic mass signal at m/z 44 and closely associated with particle organic oxidation level. Our study highlights the importance of aerosols chemical composition on determining the activation properties of aerosol particles, underlining the importance of long-term observation of CCN under different atmospheric environments, especially those with heavy pollution and high CN number concentrations.


2021 ◽  
Vol 21 (14) ◽  
pp. 11289-11302
Author(s):  
Imre Salma ◽  
Wanda Thén ◽  
Máté Vörösmarty ◽  
András Zénó Gyöngyösi

Abstract. Collocated measurements using a condensation particle counter, differential mobility particle sizer and cloud condensation nuclei counter were realised in parallel in central Budapest from 15 April 2019 to 14 April 2020 to gain insight into the cloud activation properties of urban aerosol particles. The median total particle number concentration was 10.1 × 103 cm−3. The median concentrations of cloud condensation nuclei (CCN) at water vapour supersaturation (S) values of 0.1 %, 0.2 %, 0.3 %, 0.5 % and 1.0 % were 0.59, 1.09, 1.39, 1.80 and 2.5 × 103 cm−3, respectively. The CCN concentrations represented 7–27 % of all particles. The CCN concentrations were considerably larger but the activation fractions were systematically substantially smaller than observed in regional or remote locations. The effective critical dry particle diameters (dc,eff) were derived utilising the CCN concentrations and particle number size distributions. Their median values at the five supersaturation values considered were 207, 149, 126, 105 and 80 nm, respectively; all of these diameters were positioned within the accumulation mode of the typical particle number size distribution. Their frequency distributions revealed a single peak for which the geometric standard deviation increased monotonically with S. This broadening indicated high time variability in the activating properties of smaller particles. The frequency distributions also showed fine structure, with several compositional elements that seemed to reveal a consistent or monotonical tendency with S. The relationships between the critical S and dc,eff suggest that urban aerosol particles in Budapest with diameters larger than approximately 130 nm showed similar hydroscopicity to corresponding continental aerosol particles, whereas smaller particles in Budapest were less hygroscopic than corresponding continental aerosol particles. Only modest seasonal cycling in CCN concentrations and activation fractions was seen, and only for large S values. This cycling likely reflects changes in the number concentration, chemical composition and mixing state of the particles. The seasonal dependencies of dc,eff were featureless, indicating that the droplet activation properties of the urban particles remained more or less the same throughout the year. This is again different from what is seen in non-urban locations. Hygroscopicity parameters (κ values) were computed without determining the time-dependent chemical composition of the particles. The median values for κ were 0.15, 0.10, 0.07, 0.04 and 0.02, respectively, at the five supersaturation values considered. The averages suggested that the larger particles were considerably more hygroscopic than the smaller particles. We found that the κ values for the urban aerosol were substantially smaller than those previously reported for aerosols in regional or remote locations. All of these characteristics can be linked to the specific source composition of particles in cities. The relatively large variability in the hygroscopicity parameters for a given S emphasises that the individual values represent the CCN population in ambient air while the average hygroscopicity parameter mainly corresponds to particles with sizes close to the effective critical dry particle diameter.


2016 ◽  
Vol 16 (20) ◽  
pp. 13359-13378 ◽  
Author(s):  
Hassan Beydoun ◽  
Michael Polen ◽  
Ryan C. Sullivan

Abstract. Heterogeneous ice nucleation remains one of the outstanding problems in cloud physics and atmospheric science. Experimental challenges in properly simulating particle-induced freezing processes under atmospherically relevant conditions have largely contributed to the absence of a well-established parameterization of immersion freezing properties. Here, we formulate an ice active, surface-site-based stochastic model of heterogeneous freezing with the unique feature of invoking a continuum assumption on the ice nucleating activity (contact angle) of an aerosol particle's surface that requires no assumptions about the size or number of active sites. The result is a particle-specific property g that defines a distribution of local ice nucleation rates. Upon integration, this yields a full freezing probability function for an ice nucleating particle. Current cold plate droplet freezing measurements provide a valuable and inexpensive resource for studying the freezing properties of many atmospheric aerosol systems. We apply our g framework to explain the observed dependence of the freezing temperature of droplets in a cold plate on the concentration of the particle species investigated. Normalizing to the total particle mass or surface area present to derive the commonly used ice nuclei active surface (INAS) density (ns) often cannot account for the effects of particle concentration, yet concentration is typically varied to span a wider measurable freezing temperature range. A method based on determining what is denoted an ice nucleating species' specific critical surface area is presented and explains the concentration dependence as a result of increasing the variability in ice nucleating active sites between droplets. By applying this method to experimental droplet freezing data from four different systems, we demonstrate its ability to interpret immersion freezing temperature spectra of droplets containing variable particle concentrations. It is shown that general active site density functions, such as the popular ns parameterization, cannot be reliably extrapolated below this critical surface area threshold to describe freezing curves for lower particle surface area concentrations. Freezing curves obtained below this threshold translate to higher ns values, while the ns values are essentially the same from curves obtained above the critical area threshold; ns should remain the same for a system as concentration is varied. However, we can successfully predict the lower concentration freezing curves, which are more atmospherically relevant, through a process of random sampling from g distributions obtained from high particle concentration data. Our analysis is applied to cold plate freezing measurements of droplets containing variable concentrations of particles from NX illite minerals, MCC cellulose, and commercial Snomax bacterial particles. Parameterizations that can predict the temporal evolution of the frozen fraction of cloud droplets in larger atmospheric models are also derived from this new framework.


1998 ◽  
Vol 545 ◽  
Author(s):  
Jun-Ichi Tani ◽  
Hiroyasu Kido

AbstractIn order to clarify the electrical properties of Cr-doped β-FeSi2(Fe1-xCrxSi2) and Mn-doped β--FeSi2(Fel-yMnySi2), the Hall effect and electrical resistivity of Fe1-xCrxSi2(0.01 ≦ x ≦ 0.05) and Fel-yMnySi2(0.01 ≦ y ≦ 0.10) have been measured in the temperature range between 80 and 300 K. fhe solid solutions Fel-xCrxSi2and Fel-yMnySi2are p-type over the measured temperature range. The observed features of RH of these solid solutions are explained by using the two-band model with the existence of two acceptor levels. The hole concentration of Fe1-xCrxSi2at 300 K ranges from 8.9×1018cm−3for x=0.01 to 1.1×1020cm−3for x=0.05, which is one order of magnitude higher than that of Fel-yMnySi2.


2018 ◽  
Author(s):  
Jaeseok Kim ◽  
Young Jun Yoon ◽  
Yeontae Gim ◽  
Jin Hee Choi ◽  
Hyo Jin Kang ◽  
...  

Abstract. The physical characteristics of aerosol particles during a particle burst observed at King Sejong Station in Antarctic Peninsula from March 2009 to December 2016 were analyzed. This study focuses on the seasonal variation in parameters related to particle formation such as the occurrence, formation rate (FR) and growth rate (GR), condensation sink (CS), and source rate of condensable vapor. The number concentrations during new particle formation (NPF) events varied from 1707 cm−3 to 83 120 cm−3, with an average of 20 649 ± 9290 cm−3, and the duration of the NPF events ranged from 0.6 h to 14.4 h, with a mean of 4.6 ± 1.5 h. The NPF event dominantly occurred during austral summer period (~ 72 %). The mean values of FR and GR of the aerosol particles were 2.79 ± 1.05 cm−3 s−1 and 0.68 ± 0.27 nm h−1, respectively showing enhanced rates in the summer season. The mean value of FR at King Sejong Station was higher than that at other sites in Antarctica, at 0.002–0.3 cm−3 s−1, while those of growth rates was relatively similar results observed by precious studies, at 0.4~4.3 nm h−1. The average values of CS and source rate of condensable vapor were (6.04 ± 2.74) × 10−3 s−1 and (5.19 ± 3.51) × 104 cm−3 s−1, respectively. The contribution of particle formation to cloud condensation nuclei (CCN) concentration was also investigated. The CCN concentration during the NPF period increased approximately 9 % compared with the background concentration. In addition, the effects of the origin and pathway of air masses on the characteristics of aerosol particles during a NPF event were determined. The FRs were similar regardless of the origin and pathway, whereas the GRs of particles originating from the Antarctic Peninsula and the Bellingshausen Sea, at 0.77 ± 0.25 nm h−1 and 0.76 ± 0.30 nm h−1, respectively, were higher than those of particles originating from the Weddell Sea (0.41 ± 0.15 nm h−1).


2015 ◽  
Vol 15 (8) ◽  
pp. 12167-12212
Author(s):  
B. Nagare ◽  
C. Marcolli ◽  
O. Stetzer ◽  
U. Lohmann

Abstract. Interactions of atmospheric aerosols with clouds influence cloud properties and modify the aerosol life cycle. Aerosol particles act as cloud condensation nuclei and ice nucleating particles or become incorporated into cloud droplets by scavenging. For an accurate description of aerosol scavenging and ice nucleation in contact mode, collision efficiency between droplets and aerosol particles needs to be known. This study derives the collision rate from experimental contact freezing data obtained with the ETH Collision Ice Nucleation Chamber CLINCH. Freely falling 80 μm water droplets are exposed to an aerosol consisting of 200 nm diameter silver iodide particles of concentrations from 500–5000 cm−3, which act as ice nucleating particles in contact mode. The chamber is kept at ice saturation in the temperature range from 236–261 K leading to slow evaporation of water droplets giving rise to thermophoresis and diffusiophoresis. Droplets and particles bear charges inducing electrophoresis. The experimentally derived collision efficiency of 0.13 is around one order of magnitude higher than theoretical formulations which include Brownian diffusion, impaction, interception, thermophoretic, diffusiophoretic and electric forces. This discrepancy is most probably due to uncertainties and inaccuracies in the description of thermophoretic and diffusiophoretic processes acting together. This is to the authors knowledge the first dataset of collision efficiencies acquired below 273 K. More such experiments with different droplet and particle diameters are needed to improve our understanding of collision processes acting together.


Sign in / Sign up

Export Citation Format

Share Document