scholarly journals Comments on ‘Seasonal contrast in size distributions and mixing state of black carbon and its association with PM1.0 chemical composition from the eastern coast of India’ by Kompalli et al.

2019 ◽  
Author(s):  
Anonymous
2020 ◽  
Vol 20 (6) ◽  
pp. 3965-3985 ◽  
Author(s):  
Sobhan Kumar Kompalli ◽  
Surendran Nair Suresh Babu ◽  
Sreedharan Krishnakumari Satheesh ◽  
Krishnaswamy Krishna Moorthy ◽  
Trupti Das ◽  
...  

Abstract. Over the Indian region, aerosol absorption is considered to have a potential impact on the regional climate, monsoon and hydrological cycle. Black carbon (BC) is the dominant absorbing aerosol, whose absorption potential is determined mainly by its microphysical properties, including its concentration, size and mixing state with other aerosol components. The Indo-Gangetic Plain (IGP) is one of the regional aerosol hot spots with diverse sources, both natural and anthropogenic, but still the information on the mixing state of the IGP aerosols, especially BC, is limited and a significant source of uncertainty in understanding their climatic implications. In this context, we present the results from intensive measurements of refractory BC (rBC) carried out over Bhubaneswar, an urban site in the eastern coast of India, which experiences contrasting air masses (the IGP outflow or coastal/marine air masses) in different seasons. This study helps to elucidate the microphysical characteristics of BC over this region and delineates the IGP outflow from the other air masses. The observations were carried out as part of South West Asian Aerosol Monsoon Interactions (SWAAMI) collaborative field experiment during July 2016–May 2017, using a single-particle soot photometer (SP2) that uses a laser-induced incandescence technique to measure the mass and mixing state of individual BC particles and an aerosol chemical speciation monitor (ACSM) to infer the possible coating material. Results highlighted the distinctiveness in aerosol microphysical properties in the IGP air masses. BC mass concentration was highest during winter (December–February) (∼1.94±1.58 µg m−3), when the prevailing air masses were mostly of IGP origin, followed by post-monsoon (October–November) (mean ∼1.34±1.40 µg m−3). The mass median diameter (MMD) of the BC mass size distributions was in the range 0.190–0.195 µm, suggesting mixed sources of BC, and, further, higher values (∼ 1.3–1.8) of bulk relative coating thickness (RCT) (ratio of optical and core diameters) were seen, indicating a significant fraction of highly coated BC aerosols in the IGP outflow. During the pre-monsoon (March–May), when marine/coastal air masses prevailed, BC mass concentration was lowest (∼0.82±0.84 µg m−3), and larger BC cores (MMD > 0.210 µm) were seen, suggesting distinct source processes, while RCT was ∼ 1.2–1.3, which may translate into higher extent of absolute coating on BC cores, which may have crucial regional climate implications. During the summer monsoon (July–September), BC size distributions were dominated by smaller cores (MMD ≤ 0.185 µm), with the lowest coating indicating fresher BC, likely from fossil fuel sources. A clear diurnal variation pattern of BC and RCT was noticed in all the seasons, and daytime peak in RCT suggested enhanced coating on BC due to the condensable coating material originating from photochemistry. Examination of submicrometre aerosol chemical composition highlighted that the IGP outflow was dominated by organics (47 %–49 %), and marine/coastal air masses contained higher amounts of sulfate (41 %–47 %), while ammonium and nitrate were seen in minor amounts, with significant concentrations only during the IGP air mass periods. The diurnal pattern of sulfate resembled that of the RCT of rBC particles, whereas organic mass showed a pattern similar to that of the rBC mass concentration. Seasonally, the coating on BC showed a negative association with the mass concentration of sulfate during the pre-monsoon season and with organics during the post-monsoon season. These are the first experimental data on the mixing state of BC from a long time series over the Indian region and include new information on black carbon in the IGP outflow region. These data help in improving the understanding of regional BC microphysical characteristics and their climate implications.


2019 ◽  
Author(s):  
Sobhan Kumar Kompalli ◽  
Surendran Nair Suresh Babu ◽  
Sreedharan Krishnakumari Satheesh ◽  
Krishnaswamy Krishna Moorthy ◽  
Trupti Das ◽  
...  

Abstract. Over the Indian region, aerosol absorption is considered to have potential impact on regional climate, monsoon and hydrological cycle. Black carbon (BC) is the dominant absorbing aerosol, whose absorption potential is largely determined by its microphysical properties, including its concentration, size and mixing state with other aerosol components. The Indo-Gangetic Plains (IGP) is one of the regional aerosol hot spots with diverse sources, both natural and anthropogenic, but still the information on the mixing state of the IGP aerosols, especially BC, is limited and a major source of uncertainty in understanding their climatic implications. In this context, we present the results from intensive measurements of refractory BC (rBC) carried out over Bhubaneswar, an urban site in the eastern coast of India, which experiences contrasting airmasses (the IGP outflow or coastal/marine airmasses) in different seasons. This study helps to elucidate the microphysical characteristics of BC over this region and delineates the IGP outflow from the other airmasses. The observations were carried out as part of South West Asian Aerosol Monsoon Interactions (SWAAMI) collaborative field experiment during July 2016–May 2017, using a single particle soot photometer (SP2) that uses a laser-induced incandescence technique to measure the mass and mixing state of individual BC particles and an aerosol chemical speciation monitor (ACSM). Results highlighted the distinctiveness in aerosol microphysical properties in the IGP airmasses. BC mass concentration was highest during winter (~ 1935 ± 1578 ng m−3), when the prevailing air masses were mostly of IGP origin, followed by post-monsoon (mean ~1338 ± 1396 ng m−3). Mass median diameter (MMD) of the BC mass size distributions were in the range 0.190–0.195 µm suggesting mixed sources of BC, and further, higher values (~ 1.3–1.8) of bulk relative coating thickness (RCT) (ratio of optical and core diameters) were seen indicating a large fraction of highly coated BC aerosols in the IGP outflow. During the pre-monsoon, when marine/coastal airmasses prevailed, BC mass concentration was lowest (~ 816 ± 835 ng m−3) and larger BC cores (MMD > 0.210 µm) were seen suggesting distinct source processes, while RCT was ~ 1.2–1.3, which may translate into higher extent of absolute coating on BC cores which may have important regional climate implications. During the summer monsoon, BC size distributions were dominated by smaller cores (MMD ≤ 0.185 µm) with lowest coating, indicating fresher BC, likely from fossil fuel sources. A clear diurnal variation pattern of BC and RCT was noticed in all the seasons, and day time peak in RCT suggested enhanced coating on BC due to the condensable coating material originated from photochemistry. Examination of sub-micron aerosol chemical composition highlighted that the IGP outflow is dominated by organics (47–49 %) and marine/coastal airmasses contained greater amounts of sulphate (41–47 %), while ammonium and nitrate were seen in minor amounts with significant concentrations only during the IGP airmass periods. The diurnal pattern of sulphate resembled that of the RCT of rBC particles, whereas organic mass showed a pattern similar to that of the rBC mass concentration. Though the pre-monsoon is sulphate dominated, the coating on BC showed a negative association with sulphate and same is true for organic mass during the post-monsoon, suggesting preferential coating and importance of source processes (and co-emitted species) on the mixing state of BC. This is the first experimental data on the mixing state of BC from a long time series over the Indian region, and includes new information on black carbon in the IGP outflow region. This data helps in improving the understanding of regional BC microphysical characteristics and their climate implications.


2017 ◽  
Author(s):  
Yuan Cheng ◽  
Shao-Meng Li ◽  
Mark Gordon ◽  
Peter Liu

Abstract. Black carbon (BC) plays an important role in the Earth’s climate system. However, parameterization of BC size and mixing state have not been well addressed in aerosol-climate models, introducing substantial uncertainties into the estimation of radiative forcing by BC. In this study, we focused on BC emissions from the massive oil sands (OS) industry in northern Alberta, based on an aircraft campaign conducted over the Athabasca OS region in 2013. A total of 14 flights were made over the OS source area, in which the aircraft was typically flown in a 4- or 5-sided polygon pattern along flight tracks encircling an OS facility. Another 3 flights were performed downwind of the OS source area, each of which involved at least three intercepting locations where the well-mixed OS plume was measured along flight tracks perpendicular to the wind direction. Comparable size distributions were observed for refractory black carbon (rBC) over and downwind of the OS facilities, with rBC mass median diameters (MMD) between ~ 135 and 145 nm that were characteristic of fresh urban emissions. This MMD range corresponded to rBC number median diameters (NMD) of ~ 60–70 nm, approximately 100 % higher than the NMD settings in some aerosol-climate models. The typical in- and out-of-plume segments of a flight, which had different rBC concentrations and photochemical ages, showed consistent rBC size distributions. Moreover, rBC size distributions remained unchanged at different downwind distances from the source area, suggesting that atmospheric aging would not necessarily change rBC size distribution. However, aging indeed influenced rBC mixing state. Coating thickness for rBC cores in the diameter range of 130–160 nm was nearly doubled within three hours when the OS plume was transported over a distance of 90 km from the source area.


2018 ◽  
Vol 18 (9) ◽  
pp. 6907-6921 ◽  
Author(s):  
Jingye Ren ◽  
Fang Zhang ◽  
Yuying Wang ◽  
Don Collins ◽  
Xinxin Fan ◽  
...  

Abstract. Understanding the impacts of aerosol chemical composition and mixing state on cloud condensation nuclei (CCN) activity in polluted areas is crucial for accurately predicting CCN number concentrations (NCCN). In this study, we predict NCCN under five assumed schemes of aerosol chemical composition and mixing state based on field measurements in Beijing during the winter of 2016. Our results show that the best closure is achieved with the assumption of size dependent chemical composition for which sulfate, nitrate, secondary organic aerosols, and aged black carbon are internally mixed with each other but externally mixed with primary organic aerosol and fresh black carbon (external–internal size-resolved, abbreviated as EI–SR scheme). The resulting ratios of predicted-to-measured NCCN (RCCN_p∕m) were 0.90 – 0.98 under both clean and polluted conditions. Assumption of an internal mixture and bulk chemical composition (INT–BK scheme) shows good closure with RCCN_p∕m of 1.0 –1.16 under clean conditions, implying that it is adequate for CCN prediction in continental clean regions. On polluted days, assuming the aerosol is internally mixed and has a chemical composition that is size dependent (INT–SR scheme) achieves better closure than the INT–BK scheme due to the heterogeneity and variation in particle composition at different sizes. The improved closure achieved using the EI–SR and INT–SR assumptions highlight the importance of measuring size-resolved chemical composition for CCN predictions in polluted regions. NCCN is significantly underestimated (with RCCN_p∕m of 0.66 – 0.75) when using the schemes of external mixtures with bulk (EXT–BK scheme) or size-resolved composition (EXT–SR scheme), implying that primary particles experience rapid aging and physical mixing processes in urban Beijing. However, our results show that the aerosol mixing state plays a minor role in CCN prediction when the κorg exceeds 0.1.


2018 ◽  
Vol 18 (4) ◽  
pp. 2653-2667 ◽  
Author(s):  
Yuan Cheng ◽  
Shao-Meng Li ◽  
Mark Gordon ◽  
Peter Liu

Abstract. Black carbon (BC) plays an important role in the Earth's climate system. However, parameterizations of BC size and mixing state have not been well addressed in aerosol–climate models, introducing substantial uncertainties into the estimation of radiative forcing by BC. In this study, we focused on BC emissions from the oil sands (OS) surface mining activities in northern Alberta, based on an aircraft campaign conducted over the Athabasca OS region in 2013. A total of 14 flights were made over the OS source area, in which the aircraft was typically flown in a four- or five-sided polygon pattern along flight tracks encircling an OS facility. Another 3 flights were performed downwind of the OS source area, each of which involved at least three intercepting locations where the well-mixed OS plume was measured along flight tracks perpendicular to the wind direction. Comparable size distributions were observed for refractory black carbon (rBC) over and downwind of the OS facilities, with rBC mass median diameters (MMDs) between ∼ 135 and 145 nm that were characteristic of fresh urban emissions. This MMD range corresponded to rBC number median diameters (NMDs) of ∼ 60–70 nm, approximately 100 % higher than the NMD settings in some aerosol–climate models. The typical in- and out-of-plume segments of a flight, which had different rBC concentrations and photochemical ages, showed consistent rBC size distributions in terms of MMD, NMD and the corresponding distribution widths. Moreover, rBC size distributions remained unchanged at different downwind distances from the source area, suggesting that atmospheric aging would not necessarily change rBC size distribution. However, aging indeed influenced rBC mixing state. Coating thickness for rBC cores in the diameter range of 130–160 nm was nearly doubled (from ∼ 20 to 40 nm) within 3 h when the OS plume was transported over a distance of 90 km from the source area.


2014 ◽  
Vol 14 (22) ◽  
pp. 12109-12132 ◽  
Author(s):  
S. Decesari ◽  
J. Allan ◽  
C. Plass-Duelmer ◽  
B. J. Williams ◽  
M. Paglione ◽  
...  

Abstract. The use of co-located multiple spectroscopic techniques can provide detailed information on the atmospheric processes regulating aerosol chemical composition and mixing state. So far, field campaigns heavily equipped with aerosol mass spectrometers have been carried out mainly in large conurbations and in areas directly affected by their outflow, whereas lesser efforts have been dedicated to continental areas characterised by a less dense urbanisation. We present here the results obtained at a background site in the Po Valley, Italy, in summer 2009. For the first time in Europe, six state-of-the-art spectrometric techniques were used in parallel: aerosol time-of-flight mass spectrometer (ATOFMS), two aerosol mass spectrometers (high-resolution time-of-flight aerosol mass spectrometer – HR-ToF-AMS and soot particle aerosol mass spectrometer – SP-AMS), thermal desorption aerosol gas chromatography (TAG), chemical ionisation mass spectrometry (CIMS) and (offline) proton nuclear magnetic resonance (1H-NMR) spectroscopy. The results indicate that, under high-pressure conditions, atmospheric stratification at night and early morning hours led to the accumulation of aerosols produced by anthropogenic sources distributed over the Po Valley plain. Such aerosols include primary components such as black carbon (BC), secondary semivolatile compounds such as ammonium nitrate and amines and a class of monocarboxylic acids which correspond to the AMS cooking organic aerosol (COA) already identified in urban areas. In daytime, the entrainment of aged air masses in the mixing layer is responsible for the accumulation of low-volatility oxygenated organic aerosol (LV-OOA) and also for the recycling of non-volatile primary species such as black carbon. According to organic aerosol source apportionment, anthropogenic aerosols accumulating in the lower layers overnight accounted for 38% of organic aerosol mass on average, another 21% was accounted for by aerosols recirculated in residual layers but still originating in northern Italy, while a substantial fraction (41%) was due to the most aged aerosols imported from transalpine areas. The different meteorological regimes also affected the BC mixing state: in periods of enhanced stagnation and recirculation of pollutants, the number fraction of the BC-containing particles determined by ATOFMS was 75% of the total, while in the days of enhanced ventilation of the planetary boundary layer (PBL), such fraction was significantly lower (50%) because of the relative greater influence of non-BC-containing aerosol local sources in the Po Valley. Overall, a full internal mixing between BC and the non-refractory aerosol chemical components was not observed during the experiment in this environment.


Sign in / Sign up

Export Citation Format

Share Document