scholarly journals Supplementary material to "Marine organic matter in the remote environment of the Cape Verde Islands – An introduction and overview to the MarParCloud campaign"

Author(s):  
Manuela van Pinxteren ◽  
Khanneh Wadinga Fomba ◽  
Nadja Triesch ◽  
Christian Stolle ◽  
Oliver Wurl ◽  
...  
2020 ◽  
Vol 20 (11) ◽  
pp. 6921-6951 ◽  
Author(s):  
Manuela van Pinxteren ◽  
Khanneh Wadinga Fomba ◽  
Nadja Triesch ◽  
Christian Stolle ◽  
Oliver Wurl ◽  
...  

Abstract. The project MarParCloud (Marine biological production, organic aerosol Particles and marine Clouds: a process chain) aims to improve our understanding of the genesis, modification and impact of marine organic matter (OM) from its biological production, to its export to marine aerosol particles and, finally, to its ability to act as ice-nucleating particles (INPs) and cloud condensation nuclei (CCN). A field campaign at the Cape Verde Atmospheric Observatory (CVAO) in the tropics in September–October 2017 formed the core of this project that was jointly performed with the project MARSU (MARine atmospheric Science Unravelled). A suite of chemical, physical, biological and meteorological techniques was applied, and comprehensive measurements of bulk water, the sea surface microlayer (SML), cloud water and ambient aerosol particles collected at a ground-based and a mountain station took place. Key variables comprised the chemical characterization of the atmospherically relevant OM components in the ocean and the atmosphere as well as measurements of INPs and CCN. Moreover, bacterial cell counts, mercury species and trace gases were analyzed. To interpret the results, the measurements were accompanied by various auxiliary parameters such as air mass back-trajectory analysis, vertical atmospheric profile analysis, cloud observations and pigment measurements in seawater. Additional modeling studies supported the experimental analysis. During the campaign, the CVAO exhibited marine air masses with low and partly moderate dust influences. The marine boundary layer was well mixed as indicated by an almost uniform particle number size distribution within the boundary layer. Lipid biomarkers were present in the aerosol particles in typical concentrations of marine background conditions. Accumulation- and coarse-mode particles served as CCN and were efficiently transferred to the cloud water. The ascent of ocean-derived compounds, such as sea salt and sugar-like compounds, to the cloud level, as derived from chemical analysis and atmospheric transfer modeling results, denotes an influence of marine emissions on cloud formation. Organic nitrogen compounds (free amino acids) were enriched by several orders of magnitude in submicron aerosol particles and in cloud water compared to seawater. However, INP measurements also indicated a significant contribution of other non-marine sources to the local INP concentration, as (biologically active) INPs were mainly present in supermicron aerosol particles that are not suggested to undergo strong enrichment during ocean–atmosphere transfer. In addition, the number of CCN at the supersaturation of 0.30 % was about 2.5 times higher during dust periods compared to marine periods. Lipids, sugar-like compounds, UV-absorbing (UV: ultraviolet) humic-like substances and low-molecular-weight neutral components were important organic compounds in the seawater, and highly surface-active lipids were enriched within the SML. The selective enrichment of specific organic compounds in the SML needs to be studied in further detail and implemented in an OM source function for emission modeling to better understand transfer patterns, the mechanisms of marine OM transformation in the atmosphere and the role of additional sources. In summary, when looking at particulate mass, we see oceanic compounds transferred to the atmospheric aerosol and to the cloud level, while from a perspective of particle number concentrations, sea spray aerosol (i.e., primary marine aerosol) contributions to both CCN and INPs are rather limited.


2019 ◽  
Author(s):  
Manuela van Pinxteren ◽  
Khanneh Wadinga Fomba ◽  
Nadja Triesch ◽  
Christian Stolle ◽  
Oliver Wurl ◽  
...  

Abstract. The project MarParCloud (Marine biological production, organic aerosol Particles and marine Clouds: a process chain) aims at improving our understanding of the genesis, modification and impact of marine organic matter (OM), from its biological production, via its export to marine aerosol particles and, finally, towards its ability to act as ice nucleating particles (INP) and cloud condensation nuclei (CCN). A field campaign at the Cape Verde Atmospheric Observatory (CVAO) in the tropics in September/October 2017 formed the core of this project that was jointly performed with the project (MARine atmospheric Science Unravelled). A suite of chemical, physical, biological and meteorological techniques was applied and comprehensive measurements of bulk water, the sea surface microlayer (SML), cloud water and ambient aerosol particles collected at a ground-based and a mountain station took place. Key variables comprised the chemical characterization of the atmospherically relevant OM components in the ocean and the atmosphere as well as measurements of INP and CCN. Moreover, bacterial cell counts, mercury species and trace gases were analysed. To interpret the results, the measurements were accompanied by various auxiliary parameters such as air mass back trajectory analysis, vertical atmospheric profile analysis, cloud observations and pigment measurements in seawater. Additional modelling studies supported the experimental analysis. During the campaign, the CVAO exhibited marine air masses with low and partly moderate dust influences. The marine boundary layer was well mixed as indicated by an almost uniform particle number size distribution within the boundary layer. Lipid biomarkers were present in the aerosol particles in typical concentrations of marine background conditions. Accumulation and coarse mode particles served as CCN and were efficiently transferred to the cloud water. The ascent of ocean-derived compounds, such as sea salt and sugar-like compounds, to the cloud level as derived from chemical analysis and atmospheric transfer modelling results denote an influence of marine emissions on cloud formation. However, INP measurements indicated also a significant contribution of other non-marine sources to the local INP concentration or strong enrichment processes during upward transport. Lipids, sugar-like compounds, UV absorbing humic-like substances and low molecular weight neutral components were important organic compounds in the seawater and highly surface-active lipids were enriched within the SML. The selective enrichment of specific organic compounds in the SML needs to be studied in further detail and implemented in an OM source function for emission modelling to better understand transfer patterns, mechanisms of marine OM transformation in the atmosphere and the role of additional sources. In summary, when looking at particulate mass, we do see oceanic compounds transferred to the atmospheric aerosol and to the cloud level, while from a perspective of particle number concentrations, marine contributions to both CCN and INP are rather limited.


Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
C Grosso ◽  
G Teixeira ◽  
I Gomes ◽  
ES Martins ◽  
JG Barroso ◽  
...  

Oryx ◽  
2011 ◽  
Vol 45 (2) ◽  
pp. 217-224 ◽  
Author(s):  
Sabine M. Hille ◽  
Nigel J. Collar

AbstractScavenging raptors have been postulated to be declining at a rate far higher than predatory raptors. To test this hypothesis we reviewed the historical and present status of the seven raptor species—three scavengers (two kites and a vulture), one partial scavenger (a buzzard) and three species (osprey and two falcons) that take live prey—that breed on the Cape Verde islands. Scavenging raptors have experienced steeper declines and more local extinctions than non-scavengers in Cape Verde, with the partial scavenger midway between the two groups. Causes of scavenger decline include incidental poisoning, direct persecution and declines in the availability of carcasses and other detritus. These findings, which highlight the conservation importance of the island of Santo Antão, indicate the priority that needs to be accorded to scavengers, particularly in Europe where many insular populations are reaching unsustainable levels.


Zootaxa ◽  
2017 ◽  
Vol 4317 (2) ◽  
pp. 225 ◽  
Author(s):  
JIŘÍ SKUHROVEC ◽  
PETER HLAVÁČ ◽  
JAN BATELKA

The genus Pselactus in the Cape Verde Islands is reviewed. Pselactus obesulus (Wollaston, 1867) from São Vicente is redescribed and P. strakai sp. nov. from São Nicolau is described. Both species are diagnosed and illustrated; their larvae are described, larval morphology is discussed and the current state of knowledge about immature stages of Cossoninae is summarized. The systematic position of the genus within Onycholipini is reviewed, and the placement of genus in Cossoninae is discussed. A short note on biogeography of Pselactus is provided. 


Sign in / Sign up

Export Citation Format

Share Document