scholarly journals Supplementary material to "Photo-degradation of atmospheric chromophores: type conversion and changes in photochemical reactivity"

Author(s):  
Zhen Mu ◽  
Qingcai Chen ◽  
Lixin Zhang ◽  
Dongjie Guan ◽  
Hao Li
2020 ◽  
Author(s):  
Zhen Mu ◽  
Qingcai Chen ◽  
Lixin Zhang ◽  
Dongjie Guan ◽  
Hao Li

Abstract. Atmospheric chromophoric organic matters (COM) can participate in photochemical reactions because of the photosensitiveness, thus COM have a potential contribution to aerosols aging. The photochemical mechanism of atmospheric COM and the effect of photo-degradation on its photochemical reactivity are not fully understood. To address this knowledge gap, the characteristics of COM photo-degradation and the potential effects of COM photolysis on the photochemical reactivity are illustrated. COM are identified by excitation-emission matrices combined with parallel factor analysis. We confirm that both water-soluble and water-insoluble COM are photo-bleached, and an average 70 % of fluorescence intensities are lost after 7 days of light exposure. Furtherly, it is found that there is a transformation process of low oxidation to high oxidation HULIS. We propose that the high oxidation HULIS could be used to trace the aging degree of aerosols. In terms of photochemical reactivity, compared with before photolysis, the triplet state COM (3COM*) decrease slightly in ambient particle matter (ambient PM) samples and increase in primary organic aerosol (POA). However, the COM induce fewer singlet oxygen after photolysis. The photolysis and conversion of COM are the major cause of the change of photochemical activity. The result also enunciate that the photochemical reaction mechanisms and aerosol aging processes are relatively different in various aerosols. In conclusion, we demonstrated that the photo-degradation of COM not only change the chemical compositions, but also change the roles of the COM in the aerosol aging process.


2009 ◽  
pp. 1-7 ◽  
Author(s):  
Adnan Ozcetin ◽  
Hasan Belli ◽  
Umit Ertem ◽  
Talat Bahcebasi ◽  
Ahmet Ataoglu ◽  
...  

Author(s):  
Indah Pratiwi ◽  
Yanti Sri Rezeki

This research aims to design workbook based on the scientific approach for teaching writing descriptive text. This research was conducted on the seventh-grade students of SMPN 24 Pontianak. The method of this research is ADDIE (Analysis, Design, Development, Implementation, and Evaluation) with the exclusion of Implementation and Evaluation phases. This material was designed as supplementary material to support the course book used especially in teaching writing of descriptive text. The respondents in this research were the seventh-grade students and an English teacher at SMPN 24 Pontianak. In this research, the researchers found that workbook based on scientific approach fulfilled the criteria of the good book to teach writing descriptive text. The researchers conducted an internal evaluation to see the usability and the feasibility of the workbook. The result of the evaluation is 89%. It showed that the workbook is feasible to be used by students as the supplementary material to support the main course book and help the students improve their writing ability in descriptive text.


2019 ◽  
Author(s):  
Oriol Planas ◽  
Feng Wang ◽  
Markus Leutzsch ◽  
Josep Cornella

The ability of bismuth to maneuver between different oxidation states in a catalytic redox cycle, mimicking the canonical organometallic steps associated to a transition metal, is an elusive and unprecedented approach in the field of homogeneous catalysis. Herein we present a catalytic protocol based on bismuth, a benign and sustainable main-group element, capable of performing every organometallic step in the context of oxidative fluorination of boron compounds; a territory reserved to transition metals. A rational ligand design featuring hypervalent coordination together with a mechanistic understanding of the fundamental steps, permitted a catalytic fluorination protocol based on a Bi(III)/Bi(V) redox couple, which represents a unique example where a main-group element is capable of outperforming its transition metal counterparts.<br>A main text and supplementary material have been attached as pdf files containing all the methodology, techniques and characterization of the compounds reported.<br>


2019 ◽  
Author(s):  
Chem Int

The high energy radiation overcome the bonding of solute in a solution and H2O2 acts as an oxidizing agent and generates a free radical in the solution which results in photo-degradation by converting the solute in to simple form and resultantly, colored substance under the effect of photo-degradation becomes colorless. The photo-degradation of monoazo dye Blue 13 in an aqueous solution was investigated using a laboratory scale UV lamp in the presence of H2O2 and for maximum degradation of dye, the independent parameter UV power, UV exposure time, pH and H2O2 concentration were optimized. It was found that neither UV in the presence of H2O2 is able to degrade Blue 13 under optimum condition. The results revealed that the use of both UV and H2O2 have pronounced effect on the discoloration of dyes which could be used for management of textile effluents contain waste dyes.


Sign in / Sign up

Export Citation Format

Share Document