Data for "Pines vs. oaks revisited: Forest type conversion due to high-severity fire in Madrean Woodlands"

Author(s):  
Andrew M. Barton ◽  
Helen M. Poulos
Birds ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 147-157
Author(s):  
Chad T. Hanson ◽  
Derek E. Lee ◽  
Monica L. Bond

The Spotted Owl is a rare and declining raptor inhabiting low/middle-elevation forests of the Pacific Northwest, California, and the Southwest in the USA. It is well established that Spotted Owls select dense, mature, or old forests for nesting and roosting. High-severity fire transforms such forests into a unique forest type known as “snag forest habitat”, which the owls select for foraging. This habitat is disproportionately targeted by post-fire logging projects. Numerous recent articles have explored the influence of high-severity fire and post-fire logging on this species. Studies have shown that post-fire logging significantly reduces Spotted Owl occupancy, but efforts have generally not been made to disentangle the effects of such logging from the influence of high-severity fire alone on Spotted Owls. We conducted an assessment of published, peer-reviewed articles reporting adverse impacts of high-severity fire on Spotted Owls, exploring the extent to which there may have been confounding factors, such as post-fire logging. We found that articles reporting adverse impacts of high-severity fire on Spotted Owls were pervasively confounded by post-fire logging, and in some cases by a methodological bias. Our results indicate a need to approach analyses of high-severity fire and Spotted Owls differently in future research.


BioScience ◽  
2020 ◽  
Vol 70 (8) ◽  
pp. 659-673 ◽  
Author(s):  
Jonathan D Coop ◽  
Sean A Parks ◽  
Camille S Stevens-Rumann ◽  
Shelley D Crausbay ◽  
Philip E Higuera ◽  
...  

Abstract Changing disturbance regimes and climate can overcome forest ecosystem resilience. Following high-severity fire, forest recovery may be compromised by lack of tree seed sources, warmer and drier postfire climate, or short-interval reburning. A potential outcome of the loss of resilience is the conversion of the prefire forest to a different forest type or nonforest vegetation. Conversion implies major, extensive, and enduring changes in dominant species, life forms, or functions, with impacts on ecosystem services. In the present article, we synthesize a growing body of evidence of fire-driven conversion and our understanding of its causes across western North America. We assess our capacity to predict conversion and highlight important uncertainties. Increasing forest vulnerability to changing fire activity and climate compels shifts in management approaches, and we propose key themes for applied research coproduced by scientists and managers to support decision-making in an era when the prefire forest may not return.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1135
Author(s):  
Mojgan Mahdizadeh ◽  
Will Russell

Climate driven increases in fire frequency and severity are predicted for Mediterranean climatic zones, including the Pacific coast of California. A recent high severity wildfire that burned in the Santa Cruz Mountains affected a variety of vegetation types, including ancient coast redwood (Sequoia sempervirens (D. Don) Endl.) stands. The purpose of this study was to characterize the survival and initial recovery of vegetation approximately six months after the fire. We sampled thirty randomly selected points in an old-growth coast redwood forest to examine and compare survival, crown retention, and post fire regeneration of trees by species, and the recovery of associated understory plant species. Sequoia sempervirens exhibited the highest post-fire survival (95%), with lower survival rates for subcanopy hardwood associates including tanoak (Notholithocarpus densiflorus (Hook. & Arn.) Manos) (88%), coast live oak (Quercus agrifolia Nee.) (93%), Pacific wax myrtle (Myrica californica (Cham. & Schltdl.) Wilbur) (75%), Pacific madrone (Arbutus menziesii Pursh) (71%), and the lowest survival recorded for the canopy codominant Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) (15%). Canopy retention and post fire regeneration were also highest for S. sempervirens and lowest for P. menziesii, indicating that S. sempervirens had a competitive advantage over P. menziesii following high severity crown fire. Both canopy survival and regeneration were greater for larger height and diameter trees; and basal sprouting was positively associated with tree height and diameter for S. sempervirens and N. densiflorus. Observed recovery of understory species was modest but included the reemergence of coast redwood associated herbaceous species. The robust nature of survival and recovery of S. sempervirens following this extreme fire event suggest that the removal of scorched, and the seeding or planting of trees, following this type of fire is contraindicated. The decline of P. menziesii is of concern, however, and suggests that repeated high severity fires driven by climate change could eventually lead to vegetation type conversion.


2009 ◽  
pp. 1-7 ◽  
Author(s):  
Adnan Ozcetin ◽  
Hasan Belli ◽  
Umit Ertem ◽  
Talat Bahcebasi ◽  
Ahmet Ataoglu ◽  
...  

Rhodora ◽  
10.3119/15-17 ◽  
2016 ◽  
Vol 118 (974) ◽  
pp. 189-205
Author(s):  
Kellie D. Adkins ◽  
Judy A. Chang ◽  
Lee A. Danels ◽  
LeAra M. DeBruhl ◽  
Mark M. Ellison ◽  
...  

1990 ◽  
Vol 55 ◽  
Author(s):  
D. Maddelein ◽  
N. Lust ◽  
S. Meyen ◽  
B. Muys

The  State Forest Pijnven, created early this century by afforestation with Scots  pine (Pinus sylvestris L.) of  heathland areas is now characterised in most stands by an important ingrowth  of deciduous tree species. Ingrowth is dominated by red oak (Quercus rubra L.) and black cherry (Prunus serotina Ehrh.), both  species originating from North America.  Deciduous ingrowth in the pine stands profoundly influences herbal  composition of the stand. Deschampsia flexuosa (L.) Trin., abundant in all older pine stands, disappears when  deciduous trees settle and species diversity, already low in the pine stands,  further diminishes. Important oak and cherry regeneration is depending on the  presence of seed trees in the vicinity; when lacking, a new pine generation  manages to settle. A good red oak regeneration can be useful as a basis for  stand conversion towards a mixed, uneven-aged deciduous forest type, but in  many cases this possibility is hampered by massive invasion of black cherry,  preventing all other species to regenerate.


Sign in / Sign up

Export Citation Format

Share Document