scholarly journals Supplementary material to "Time dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling PMF window"

Author(s):  
Gang Chen ◽  
Yulia Sosedova ◽  
Francesco Canonaco ◽  
Roman Fröhlich ◽  
Anna Tobler ◽  
...  
2021 ◽  
Vol 21 (19) ◽  
pp. 15081-15101
Author(s):  
Gang Chen ◽  
Yulia Sosedova ◽  
Francesco Canonaco ◽  
Roman Fröhlich ◽  
Anna Tobler ◽  
...  

Abstract. We collected 1 year of aerosol chemical speciation monitor (ACSM) data in Magadino, a village located in the south of the Swiss Alpine region, one of Switzerland's most polluted areas. We analysed the mass spectra of organic aerosol (OA) by positive matrix factorisation (PMF) using Source Finder Professional (SoFi Pro) to retrieve the origins of OA. Therein, we deployed a rolling algorithm, which is closer to the measurement, to account for the temporal changes in the source profiles. As the first-ever application of rolling PMF with multilinear engine (ME-2) analysis on a yearlong dataset that was collected from a rural site, we resolved two primary OA factors (traffic-related hydrocarbon-like OA (HOA) and biomass burning OA (BBOA)), one mass-to-charge ratio (m/z) 58-related OA (58-OA) factor, a less oxidised oxygenated OA (LO-OOA) factor, and a more oxidised oxygenated OA (MO-OOA) factor. HOA showed stable contributions to the total OA through the whole year ranging from 8.1 % to 10.1 %, while the contribution of BBOA showed an apparent seasonal variation with a range of 8.3 %–27.4 % (highest during winter, lowest during summer) and a yearly average of 17.1 %. OOA (sum of LO-OOA and MO-OOA) contributed 71.6 % of the OA mass, varying from 62.5 % (in winter) to 78 % (in spring and summer). The 58-OA factor mainly contained nitrogen-related variables which appeared to be pronounced only after the filament switched. However, since the contribution of this factor was insignificant (2.1 %), we did not attempt to interpolate its potential source in this work. The uncertainties (σ) for the modelled OA factors (i.e. rotational uncertainty and statistical variability in the sources) varied from ±4 % (58-OA) to a maximum of ±40 % (LO-OOA). Considering that BBOA and LO-OOA (showing influences of biomass burning in winter) had significant contributions to the total OA mass, we suggest reducing and controlling biomass-burning-related residential heating as a mitigation strategy for better air quality and lower PM levels in this region or similar locations. In Appendix A, we conduct a head-to-head comparison between the conventional seasonal PMF analysis and the rolling mechanism. We find similar or slightly improved results in terms of mass concentrations, correlations with external tracers, and factor profiles of the constrained POA factors. The rolling results show smaller scaled residuals and enhanced correlations between OOA factors and corresponding inorganic salts compared to those of the seasonal solutions, which was most likely because the rolling PMF analysis can capture the temporal variations in the oxidation processes for OOA components. Specifically, the time-dependent factor profiles of MO-OOA and LO-OOA can well explain the temporal viabilities of two main ions for OOA factors, m/z 44 (CO2+) and m/z 43 (mostly C2H3O+). Therefore, this rolling PMF analysis provides a more realistic source apportionment (SA) solution with time-dependent OA sources. The rolling results also show good agreement with offline Aerodyne aerosol mass spectrometer (AMS) SA results from filter samples, except for in winter. The latter discrepancy is likely because the online measurement can capture the fast oxidation processes of biomass burning sources, in contrast to the 24 h filter samples. This study demonstrates the strengths of the rolling mechanism, provides a comprehensive criterion list for ACSM users to obtain reproducible SA results, and is a role model for similar analyses of such worldwide available data.


2020 ◽  
Author(s):  
Gang Chen ◽  
Yulia Sosedova ◽  
Francesco Canonaco ◽  
Roman Fröhlich ◽  
Anna Tobler ◽  
...  

Abstract. We have collected one year of aerosol chemical speciation monitor (ACSM) data in Magadino, a village located in the south of the Swiss Alpine region, which is one of the most polluted areas in Switzerland. We analysed the mass spectra of organic aerosol (OA) by positive matrix factorization (PMF) using Source Finder Professional (SoFi Pro) to retrieve the origins of OA. Therein, we deployed the rolling algorithm to account for the temporal changes of the source profiles, which is closer to the real world. As the first ever application of rolling PMF analysis for a rural cite, we resolved two primary OA factors (traffic-related hydrocarbon-like OA (HOA) and biomass burning OA (BBOA)), one local OA (LOA) factor, a less oxidized oxygenated OA (LO-OOA) factor, and a more oxidized oxygenated OA (MO-OOA) factor. HOA showed stable contributions to the total OA through the whole year ranging from 8.1–10.1 %, while the contribution of BBOA showed a clear seasonal variation with a range of 8.3–27.4 % (highest during winter, lowest during summer) and a yearly average of 17.1 %. The OOA was represented by two factors (LO-OOA and MO-OOA) throughout the year. OOA contributed 71.6 % of the OA mass, varying from 62.5 % (in winter) to 78 % (in spring and summer). The uncertainties (σ) for the modelled OA factors (i.e., rotational uncertainty and statistical variability of the sources) varied from ±4 % (LOA) to a maximum of ±40 % (LO-OOA). Considering the fact that BBOA and LO-OOA (showing influences of biomass burning in winter) had significant contributions to the total OA mass, we suggest a reduction and control of the residential heating as a mitigation strategy for better air quality and lower PM levels in this region. In Appendix A, we conducted a head-to-head comparison between the conventional seasonal PMF analysis and the rolling mechanism. It showed similar or slightly improved results in terms of mass concentrations, correlations with external tracers and factor profiles of the constrained POA factors. The rolling results show smaller scaled residuals and enhanced correlations between OOA factors and corresponding inorganic salts than those of the seasonal solutions, was most likely because the rolling PMF analysis can capture the temporal variations of the oxidation processes for OOA sources. Specifically, the time dependent factor profiles of MO-OOA and LO-OOA can well explain the temporal viabilities of two main ions for OOA factors, m/z 44 (CO2+) and m/z 43 (mostly C2H3O+). This rolling PMF analysis therefore provides a more realistic source apportionment (SA) solution, with time-dependent OA sources. The rolling results show also good agreement with offline Aerodyne aerosol mass spectrometer (AMS) SA results from filter samples, except for winter. This is likely because the online measurement is capable of capturing the fast oxidation processes of biomass burning sources. This study demonstrates the strengths of the rolling mechanism and provides a comprehensive criterion list for ACSM users to obtain reproducible SA results and is a role model for similar analyses of such world-wide available data.


2021 ◽  
Author(s):  
Anna K. Tobler ◽  
Alicja Skiba ◽  
Francesco Canonaco ◽  
Griša Močnik ◽  
Pragati Rai ◽  
...  

2019 ◽  
Author(s):  
Marco Paglione ◽  
Stefania Gilardoni ◽  
Matteo Rinaldi ◽  
Stefano Decesari ◽  
Nicola Zanca ◽  
...  

Abstract. The Po Valley (Italy) is a well-known air quality hotspot characterized by Particulate Matter (PM) levels well above the limit set by the European Air Quality Directive and by the World Health Organization, especially during the colder season. In the framework of the Emilia-Romagna regional project SUPERSITO, the southern Po Valley submicron aerosol chemical composition was characterized by means of High-Resolution Aerosol Mass Spectroscopy (HR-AMS) with the specific aim of organic aerosol (OA) characterization and source apportionment. Eight intensive observation periods (IOPs) were carried out over four years (from 2011 to 2014) at two different sites (Bologna, BO, urban background and San Pietro Capofiume, SPC, rural background), to characterize the spatial variability and seasonality of the OA sources, with a special focus on the cold season. On the multi-year basis of the study, the AMS observations show that OA accounts for an average 45 ± 8 % (ranging 33–58 %) and 46 ± 7 % (ranging 36–50 %) of the total non-refractory submicron particle mass (PM1-NR) at the urban and at the rural site, respectively. Primary organic aerosol (POA) comprises biomass burning (23 ± 13 % of OA) and fossil fuel (12 ± 7 %) contributions with a marked seasonality in concentration. As expected, the biomass burning contribution to POA is more significant at the rural site (urban/rural concentrations ratio of 0.67), but it is also an important source of POA at the urban site during the cold season, with contributions ranging from 14 to 38 % of the total OA mass. Secondary organic aerosol (SOA) contribute to OA mass to a much larger extent than POA at both sites throughout the year (69 ± 16 % and 83 ± 16 % at urban and rural, respectively), with important implications for public health. Within the secondary fraction of OA, the measurements highlight the importance of biomass burning ageing products during the cold season, even at the urban background site. This biomass burning SOA fraction represents 14–44 % of the total OA mass in the cold season, indicating that in this region a major contribution of combustion sources to PM mass is mediated by environmental conditions and atmospheric reactivity. Among the environmental factors controlling the formation of SOA in the Po Valley, the availability of liquid water in the aerosol was shown to play a key role in the cold season. We estimate that organic fraction originating from aqueous reactions of biomass burning products (bb-aqSOA) represents 21 % (14–28 %) and 25 % (14–35 %) of the total OA mass and 44 % (32–56 %) and 61 % (21–100 %) of the SOA mass at the urban and rural sites, respectively.


2020 ◽  
Vol 13 (6) ◽  
pp. 3205-3219 ◽  
Author(s):  
Weiqi Xu ◽  
Yao He ◽  
Yanmei Qiu ◽  
Chun Chen ◽  
Conghui Xie ◽  
...  

Abstract. Source apportionment of organic aerosol (OA) from aerosol mass spectrometer (AMS) or aerosol chemical speciation monitor (ACSM) measurements relies largely upon mass spectral profiles from different source emissions. However, the changes in mass spectra of primary emissions from AMS–ACSM with the newly developed capture vaporizer (CV) are poorly understood. Here we conducted 21 cooking, crop straw, wood, and coal burning experiments to characterize the mass spectral features of OA and water-soluble OA (WSOA) using SV-AMS and CV-ACSM. Our results show overall similar spectral characteristics between SV-AMS and CV-ACSM for different primary emissions despite additional thermal decomposition in CV, and the previous spectral features for diagnostics of primary OA factors are generally well retained. However, the mass spectral differences between OA and WSOA can be substantial for both SV-AMS and CV-ACSM. The changes in f55 (fraction of m∕z 55 in OA) vs. f57, f44 vs. f60, and f44 vs. f43 in CV-ACSM are also observed, yet the evolving trends are similar to those of SV-AMS. By applying the source spectral profiles to a winter CV-ACSM study at a highly polluted rural site in the North China Plain, the source apportionment of primary OA was much improved, highlighting the two most important primary sources of biomass burning and coal combustion (32 % and 21 %). Considering the rapidly increasing deployments of CV-ACSM and WSOA studies worldwide, the mass spectral characterization has significant implications by providing essential constraints for more accurate source apportionment and making better strategies for air pollution control in regions with diverse primary emissions.


2017 ◽  
Author(s):  
Kaspar R. Daellenbach ◽  
Giulia Stefenelli ◽  
Carlo Bozzetti ◽  
Athanasia Vlachou ◽  
Paola Fermo ◽  
...  

Abstract. Long-term monitoring of the organic aerosol is important for epidemiological studies, validation of atmospheric models, and air quality management. In this study, we apply a recently developed filter-based offline methodology of the aerosol mass spectrometer to investigate the regional and seasonal differences of contributing organic aerosol sources. We present offline-AMS measurements for particulate matter smaller than 10 μm 9 stations in central Europe with different exposure characteristics for the entire year of 2013 (819 samples). The focus of this study is a detailed source apportionment analysis (using PMF) including in-depth assessment of the related uncertainties. Primary organic aerosol (POA) is separated in three components: hydrocarbon-like OA which is related to traffic emissions (HOA), cooking OA (COA), and biomass-burning OA (BBOA). We observe enhanced production of secondary organic aerosol (SOA) in summer, following the increase in biogenic emissions with temperature (summer oxygenated OA, SOOA). In addition, a SOA component was extracted that correlated with anthropogenic secondary inorganic species which is dominant in winter (winter oxygenated OA, WOOA). A factor (SC-OA) explaining sulfur-containing fragments (CH3SO2+), which has an event-driven temporal behavior, was also identified. The relative yearly average factor contributions range for HOA from 3 to 15 %, for COA from 3 to 31 %, for BBOA from 11 to 61 %, for SC-OA from 5 to 23 %, for WOOA from 14 to 28 %, and for SOOA from 14 to 40 %. The uncertainty of the relative average factor contribution lies between 5 and 9 % of OA. At the sites north of the alpine crest, the sum of HOA, COA, and BBOA (POA) contributes less to OA (POA/OA = 0.3) than at the southern alpine valley sites (0.6). BBOA is the main contributor to POA with 88 % in alpine valleys and 43 % north of the alpine crest. Furthermore, the influence of primary biological particles (PBOA), not resolved by PMF, is estimated and could contribute significantly to OA in PM10.


2017 ◽  
Author(s):  
Carlo Bozzetti ◽  
Imad El Haddad ◽  
Dalia Salameh ◽  
Kaspar Rudolf Daellenbach ◽  
Paola Fermo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document