scholarly journals Time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (PMF) window

2021 ◽  
Vol 21 (19) ◽  
pp. 15081-15101
Author(s):  
Gang Chen ◽  
Yulia Sosedova ◽  
Francesco Canonaco ◽  
Roman Fröhlich ◽  
Anna Tobler ◽  
...  

Abstract. We collected 1 year of aerosol chemical speciation monitor (ACSM) data in Magadino, a village located in the south of the Swiss Alpine region, one of Switzerland's most polluted areas. We analysed the mass spectra of organic aerosol (OA) by positive matrix factorisation (PMF) using Source Finder Professional (SoFi Pro) to retrieve the origins of OA. Therein, we deployed a rolling algorithm, which is closer to the measurement, to account for the temporal changes in the source profiles. As the first-ever application of rolling PMF with multilinear engine (ME-2) analysis on a yearlong dataset that was collected from a rural site, we resolved two primary OA factors (traffic-related hydrocarbon-like OA (HOA) and biomass burning OA (BBOA)), one mass-to-charge ratio (m/z) 58-related OA (58-OA) factor, a less oxidised oxygenated OA (LO-OOA) factor, and a more oxidised oxygenated OA (MO-OOA) factor. HOA showed stable contributions to the total OA through the whole year ranging from 8.1 % to 10.1 %, while the contribution of BBOA showed an apparent seasonal variation with a range of 8.3 %–27.4 % (highest during winter, lowest during summer) and a yearly average of 17.1 %. OOA (sum of LO-OOA and MO-OOA) contributed 71.6 % of the OA mass, varying from 62.5 % (in winter) to 78 % (in spring and summer). The 58-OA factor mainly contained nitrogen-related variables which appeared to be pronounced only after the filament switched. However, since the contribution of this factor was insignificant (2.1 %), we did not attempt to interpolate its potential source in this work. The uncertainties (σ) for the modelled OA factors (i.e. rotational uncertainty and statistical variability in the sources) varied from ±4 % (58-OA) to a maximum of ±40 % (LO-OOA). Considering that BBOA and LO-OOA (showing influences of biomass burning in winter) had significant contributions to the total OA mass, we suggest reducing and controlling biomass-burning-related residential heating as a mitigation strategy for better air quality and lower PM levels in this region or similar locations. In Appendix A, we conduct a head-to-head comparison between the conventional seasonal PMF analysis and the rolling mechanism. We find similar or slightly improved results in terms of mass concentrations, correlations with external tracers, and factor profiles of the constrained POA factors. The rolling results show smaller scaled residuals and enhanced correlations between OOA factors and corresponding inorganic salts compared to those of the seasonal solutions, which was most likely because the rolling PMF analysis can capture the temporal variations in the oxidation processes for OOA components. Specifically, the time-dependent factor profiles of MO-OOA and LO-OOA can well explain the temporal viabilities of two main ions for OOA factors, m/z 44 (CO2+) and m/z 43 (mostly C2H3O+). Therefore, this rolling PMF analysis provides a more realistic source apportionment (SA) solution with time-dependent OA sources. The rolling results also show good agreement with offline Aerodyne aerosol mass spectrometer (AMS) SA results from filter samples, except for in winter. The latter discrepancy is likely because the online measurement can capture the fast oxidation processes of biomass burning sources, in contrast to the 24 h filter samples. This study demonstrates the strengths of the rolling mechanism, provides a comprehensive criterion list for ACSM users to obtain reproducible SA results, and is a role model for similar analyses of such worldwide available data.

2020 ◽  
Author(s):  
Gang Chen ◽  
Yulia Sosedova ◽  
Francesco Canonaco ◽  
Roman Fröhlich ◽  
Anna Tobler ◽  
...  

Abstract. We have collected one year of aerosol chemical speciation monitor (ACSM) data in Magadino, a village located in the south of the Swiss Alpine region, which is one of the most polluted areas in Switzerland. We analysed the mass spectra of organic aerosol (OA) by positive matrix factorization (PMF) using Source Finder Professional (SoFi Pro) to retrieve the origins of OA. Therein, we deployed the rolling algorithm to account for the temporal changes of the source profiles, which is closer to the real world. As the first ever application of rolling PMF analysis for a rural cite, we resolved two primary OA factors (traffic-related hydrocarbon-like OA (HOA) and biomass burning OA (BBOA)), one local OA (LOA) factor, a less oxidized oxygenated OA (LO-OOA) factor, and a more oxidized oxygenated OA (MO-OOA) factor. HOA showed stable contributions to the total OA through the whole year ranging from 8.1–10.1 %, while the contribution of BBOA showed a clear seasonal variation with a range of 8.3–27.4 % (highest during winter, lowest during summer) and a yearly average of 17.1 %. The OOA was represented by two factors (LO-OOA and MO-OOA) throughout the year. OOA contributed 71.6 % of the OA mass, varying from 62.5 % (in winter) to 78 % (in spring and summer). The uncertainties (σ) for the modelled OA factors (i.e., rotational uncertainty and statistical variability of the sources) varied from ±4 % (LOA) to a maximum of ±40 % (LO-OOA). Considering the fact that BBOA and LO-OOA (showing influences of biomass burning in winter) had significant contributions to the total OA mass, we suggest a reduction and control of the residential heating as a mitigation strategy for better air quality and lower PM levels in this region. In Appendix A, we conducted a head-to-head comparison between the conventional seasonal PMF analysis and the rolling mechanism. It showed similar or slightly improved results in terms of mass concentrations, correlations with external tracers and factor profiles of the constrained POA factors. The rolling results show smaller scaled residuals and enhanced correlations between OOA factors and corresponding inorganic salts than those of the seasonal solutions, was most likely because the rolling PMF analysis can capture the temporal variations of the oxidation processes for OOA sources. Specifically, the time dependent factor profiles of MO-OOA and LO-OOA can well explain the temporal viabilities of two main ions for OOA factors, m/z 44 (CO2+) and m/z 43 (mostly C2H3O+). This rolling PMF analysis therefore provides a more realistic source apportionment (SA) solution, with time-dependent OA sources. The rolling results show also good agreement with offline Aerodyne aerosol mass spectrometer (AMS) SA results from filter samples, except for winter. This is likely because the online measurement is capable of capturing the fast oxidation processes of biomass burning sources. This study demonstrates the strengths of the rolling mechanism and provides a comprehensive criterion list for ACSM users to obtain reproducible SA results and is a role model for similar analyses of such world-wide available data.


2019 ◽  
Author(s):  
Marco Paglione ◽  
Stefania Gilardoni ◽  
Matteo Rinaldi ◽  
Stefano Decesari ◽  
Nicola Zanca ◽  
...  

Abstract. The Po Valley (Italy) is a well-known air quality hotspot characterized by Particulate Matter (PM) levels well above the limit set by the European Air Quality Directive and by the World Health Organization, especially during the colder season. In the framework of the Emilia-Romagna regional project SUPERSITO, the southern Po Valley submicron aerosol chemical composition was characterized by means of High-Resolution Aerosol Mass Spectroscopy (HR-AMS) with the specific aim of organic aerosol (OA) characterization and source apportionment. Eight intensive observation periods (IOPs) were carried out over four years (from 2011 to 2014) at two different sites (Bologna, BO, urban background and San Pietro Capofiume, SPC, rural background), to characterize the spatial variability and seasonality of the OA sources, with a special focus on the cold season. On the multi-year basis of the study, the AMS observations show that OA accounts for an average 45 ± 8 % (ranging 33–58 %) and 46 ± 7 % (ranging 36–50 %) of the total non-refractory submicron particle mass (PM1-NR) at the urban and at the rural site, respectively. Primary organic aerosol (POA) comprises biomass burning (23 ± 13 % of OA) and fossil fuel (12 ± 7 %) contributions with a marked seasonality in concentration. As expected, the biomass burning contribution to POA is more significant at the rural site (urban/rural concentrations ratio of 0.67), but it is also an important source of POA at the urban site during the cold season, with contributions ranging from 14 to 38 % of the total OA mass. Secondary organic aerosol (SOA) contribute to OA mass to a much larger extent than POA at both sites throughout the year (69 ± 16 % and 83 ± 16 % at urban and rural, respectively), with important implications for public health. Within the secondary fraction of OA, the measurements highlight the importance of biomass burning ageing products during the cold season, even at the urban background site. This biomass burning SOA fraction represents 14–44 % of the total OA mass in the cold season, indicating that in this region a major contribution of combustion sources to PM mass is mediated by environmental conditions and atmospheric reactivity. Among the environmental factors controlling the formation of SOA in the Po Valley, the availability of liquid water in the aerosol was shown to play a key role in the cold season. We estimate that organic fraction originating from aqueous reactions of biomass burning products (bb-aqSOA) represents 21 % (14–28 %) and 25 % (14–35 %) of the total OA mass and 44 % (32–56 %) and 61 % (21–100 %) of the SOA mass at the urban and rural sites, respectively.


2021 ◽  
Vol 21 (13) ◽  
pp. 10763-10777
Author(s):  
Zainab Bibi ◽  
Hugh Coe ◽  
James Brooks ◽  
Paul I. Williams ◽  
Ernesto Reyes-Villegas ◽  
...  

Abstract. Atmospheric aerosol particles are known to have detrimental effects on human health and climate. Black carbon is an important constituent of atmospheric aerosol particulate matter (PM), emitted from incomplete combustion. Source apportionment of BC is very important, to evaluate the influence of different sources. The high-resolution soot particle aerosol mass spectrometer (HR-SP-AMS) instrument uses a laser vaporiser, which allows the real-time detection and characterisation of refractory black carbon (rBC) and its internally mixed particles such as metals, coating species, and rBC subcomponents in the form of HOA + fullerene. In this case study, the soot data were collected by using HR-SP-AMS during Guy Fawkes Night on 5 November 2014. Positive matrix factorisation was applied to positively discriminate between different wood-burning and bonfire sources for the first time, which no existing black carbon source apportionment technique is currently able to do. Along with this, the use of the fullerene signals in differentiating between soot sources and the use of metals as a tracer for fireworks has also been investigated, which did not significantly contribute to the rBC concentrations. The addition of fullerene signals and successful positive matrix factorisation (PMF) application to HR-SP-AMS data apportioned rBC into more than two sources. These bonfire sources are HOA + fullerene, biomass burning organic aerosol, more oxidised oxygenated organic aerosol (MO-OOA), and non-bonfire sources such as hydrocarbon-like OA and domestic burning. The result of correlation analysis between HR-SP-AMS data and previously published Aethalometer, MAAP, and CIMS data provides an effective way of gaining insights into the relationships between the variables and provide a quantitative estimate of the source contributions to the BC budget during this period. This research study is an important demonstration of using HR-SP-AMS for the purpose of BC source apportionment.


2020 ◽  
Vol 20 (3) ◽  
pp. 1233-1254 ◽  
Author(s):  
Marco Paglione ◽  
Stefania Gilardoni ◽  
Matteo Rinaldi ◽  
Stefano Decesari ◽  
Nicola Zanca ◽  
...  

Abstract. The Po Valley (Italy) is a well-known air quality hotspot characterized by particulate matter (PM) levels well above the limit set by the European Air Quality Directive and by the World Health Organization, especially during the colder season. In the framework of Emilia-Romagna regional project “Supersito”, the southern Po Valley submicron aerosol chemical composition was characterized by means of high-resolution aerosol mass spectroscopy (HR-AMS) with the specific aim of organic aerosol (OA) characterization and source apportionment. Eight intensive observation periods (IOPs) were carried out over 4 years (from 2011 to 2014) at two different sites (Bologna, BO, urban background, and San Pietro Capofiume, SPC, rural background), to characterize the spatial variability and seasonality of the OA sources, with a special focus on the cold season. On the multi-year basis of the study, the AMS observations show that OA accounts for averages of 45±8 % (ranging from 33 % to 58 %) and 46±7 % (ranging from 36 % to 50 %) of the total non-refractory submicron particle mass (PM1-NR) at the urban and rural sites, respectively. Primary organic aerosol (POA) comprises biomass burning (23±13 % of OA) and fossil fuel (12±7 %) contributions with a marked seasonality in concentration. As expected, the biomass burning contribution to POA is more significant at the rural site (urban / rural concentration ratio of 0.67), but it is also an important source of POA at the urban site during the cold season, with contributions ranging from 14 % to 38 % of the total OA mass. Secondary organic aerosol (SOA) contributes to OA mass to a much larger extent than POA at both sites throughout the year (69±16 % and 83±16 % at the urban and rural sites, respectively), with important implications for public health. Within the secondary fraction of OA, the measurements highlight the importance of biomass burning aging products during the cold season, even at the urban background site. This biomass burning SOA fraction represents 14 %–44 % of the total OA mass in the cold season, indicating that in this region a major contribution of combustion sources to PM mass is mediated by environmental conditions and atmospheric reactivity. Among the environmental factors controlling the formation of SOA in the Po Valley, the availability of liquid water in the aerosol was shown to play a key role in the cold season. We estimate that the organic fraction originating from aqueous reactions of biomass burning products (“bb-aqSOA”) represents 21 % (14 %–28 %) and 25 % (14 %–35 %) of the total OA mass and 44 % (32 %–56 %) and 61 % (21 %–100 %) of the SOA mass at the urban and rural sites, respectively.


2021 ◽  
Author(s):  
Simone M. Pieber ◽  
Dac-Loc Nguyen ◽  
Hendryk Czech ◽  
Stephan Henne ◽  
Nicolas Bukowiecki ◽  
...  

<p>Open biomass burning (BB) is a globally widespread phenomenon. The fires release pollutants, which are harmful for human and ecosystem health and alter the Earth's radiative balance. Yet, the impact of various types of BB on the global radiative forcing remains poorly constrained concerning greenhouse gas emissions, BB organic aerosol (OA) chemical composition and related light absorbing properties. Fire emissions composition is influenced by multiple factors (e.g., fuel and thereby vegetation-type, fuel moisture, fire temperature, available oxygen). Due to regional variations in these parameters, studies in different world regions are needed. Here we investigate the influence of seasonally recurring BB on trace gas concentration and air quality at the regional Global Atmosphere Watch (GAW) station Pha Din (PDI) in rural Northwestern Vietnam. PDI is located in a sparsely populated area on the top of a hill (1466 m a.s.l.) and is well suited to study the large-scale fires on the Indochinese Peninsula, whose pollution plumes are frequently transported towards the site [1]. We present continuous trace gas observations of CO<sub>2</sub>, CH<sub>4</sub>, CO, and O<sub>3</sub> conducted at PDI since 2014 and interpret the data with atmospheric transport simulations. Annually recurrent large scale BB leads to hourly time-scale peaks CO mixing ratios at PDI of 1000 to 1500 ppb around every April since the start of data collection in 2014. We complement this analysis with carbonaceous PM<sub>2.5 </sub>chemical composition analyzed during an intensive campaign in March-April 2015. This includes measurements of elemental and organic carbon (EC/OC) and more than 50 organic markers, such as sugars, PAHs, fatty acids and nitro-aromatics [2]. For the intensive campaign, we linked CO, CO<sub>2</sub>, CH<sub>4</sub> and O<sub>3</sub> mixing ratios to a statistical classification of BB events, which is based on OA composition. We found increased CO and O<sub>3</sub> levels during medium and high BB influence during the intensive campaign. A backward trajectory analysis confirmed different source regions for the identified periods based on the OA cluster. Typically, cleaner air masses arrived from northeast, i.e., mainland China and Yellow sea during the intensive campaign. The more polluted periods were characterized by trajectories from southwest, with more continental recirculation of the medium cluster, and more westerly advection for the high cluster. These findings highlight that BB activities in Northern Southeast Asia significantly enhances the regional OA loading, chemical PM<sub>2.5 </sub>composition and the trace gases in northwestern Vietnam. The presented analysis adds valuable data on air quality in a region of scarce data availability.</p><p> </p><p><strong>REFERENCES</strong></p><p>[1] Bukowiecki, N. et al. Effect of Large-scale Biomass Burning on Aerosol Optical Properties at the GAW Regional Station Pha Din, Vietnam. AAQR. 19, 1172–1187 (2019).</p><p>[2] Nguyen, D. L, et al. Carbonaceous aerosol composition in air masses influenced by large-scale biomass burning: a case-study in Northwestern Vietnam. ACPD., https://doi.org/10.5194/acp-2020-1027, in review, 2020.</p>


2020 ◽  
Vol 13 (6) ◽  
pp. 3205-3219 ◽  
Author(s):  
Weiqi Xu ◽  
Yao He ◽  
Yanmei Qiu ◽  
Chun Chen ◽  
Conghui Xie ◽  
...  

Abstract. Source apportionment of organic aerosol (OA) from aerosol mass spectrometer (AMS) or aerosol chemical speciation monitor (ACSM) measurements relies largely upon mass spectral profiles from different source emissions. However, the changes in mass spectra of primary emissions from AMS–ACSM with the newly developed capture vaporizer (CV) are poorly understood. Here we conducted 21 cooking, crop straw, wood, and coal burning experiments to characterize the mass spectral features of OA and water-soluble OA (WSOA) using SV-AMS and CV-ACSM. Our results show overall similar spectral characteristics between SV-AMS and CV-ACSM for different primary emissions despite additional thermal decomposition in CV, and the previous spectral features for diagnostics of primary OA factors are generally well retained. However, the mass spectral differences between OA and WSOA can be substantial for both SV-AMS and CV-ACSM. The changes in f55 (fraction of m∕z 55 in OA) vs. f57, f44 vs. f60, and f44 vs. f43 in CV-ACSM are also observed, yet the evolving trends are similar to those of SV-AMS. By applying the source spectral profiles to a winter CV-ACSM study at a highly polluted rural site in the North China Plain, the source apportionment of primary OA was much improved, highlighting the two most important primary sources of biomass burning and coal combustion (32 % and 21 %). Considering the rapidly increasing deployments of CV-ACSM and WSOA studies worldwide, the mass spectral characterization has significant implications by providing essential constraints for more accurate source apportionment and making better strategies for air pollution control in regions with diverse primary emissions.


2019 ◽  
Vol 19 (12) ◽  
pp. 8037-8062 ◽  
Author(s):  
Lu Qi ◽  
Mindong Chen ◽  
Giulia Stefenelli ◽  
Veronika Pospisilova ◽  
Yandong Tong ◽  
...  

Abstract. Real-time, in situ molecular composition measurements of the organic fraction of fine particulate matter (PM2.5) remain challenging, hindering a full understanding of the climate impacts and health effects of PM2.5. In particular, the thermal decomposition and ionization-induced fragmentation affecting current techniques has limited a detailed investigation of secondary organic aerosol (SOA), which typically dominates OA. Here we deploy a novel extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF-MS) during winter 2017 in downtown Zurich, Switzerland, which overcomes these limitations, together with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and supporting instrumentation. Positive matrix factorization (PMF) implemented within the Multilinear Engine (ME-2) program was applied to the EESI-TOF-MS data to quantify the primary and secondary contributions to OA. An 11-factor solution was selected as the best representation of the data, including five primary and six secondary factors. Primary factors showed influence from cooking, cigarette smoke, biomass burning (two factors) and a special local unknown event occurred only during two nights. Secondary factors were affected by biomass burning (three factors, distinguished by temperature and/or wind direction), organonitrates, monoterpene oxidation, and undetermined regional processing, in particular the contributions of wood combustion. While the AMS attributed slightly over half the OA mass to SOA but did not identify its source, the EESI-TOF-MS showed that most (>70 %) of the SOA was derived from biomass burning. Together with significant contributions from less aged biomass burning factors identified by both AMS and EESI-TOF-MS, this firmly establishes biomass burning as the single most important contributor to OA mass at this site during winter. High correlation was obtained between EESI-TOF-MS and AMS PMF factors where specific analogues existed, as well as between total signal and POA–SOA apportionment. This suggests the EESI-TOF-MS apportionment in the current study can be approximately taken at face value, despite ion-by-ion differences in relative sensitivity. The apportionment of specific ions measured by the EESI-TOF-MS (e.g., levoglucosan, nitrocatechol, and selected organic acids) and utilization of a cluster analysis-based approach to identify key marker ions for the EESI-TOF-MS factors are investigated. The interpretability of the EESI-TOF-MS results and improved source separation relative to the AMS within this pilot campaign validate the EESI-TOF-MS as a promising approach to source apportionment and atmospheric composition research.


2018 ◽  
Vol 18 (6) ◽  
pp. 4093-4111 ◽  
Author(s):  
Ernesto Reyes-Villegas ◽  
Michael Priestley ◽  
Yu-Chieh Ting ◽  
Sophie Haslett ◽  
Thomas Bannan ◽  
...  

Abstract. Over the past decade, there has been an increasing interest in short-term events that negatively affect air quality such as bonfires and fireworks. High aerosol and gas concentrations generated from public bonfires or fireworks were measured in order to understand the night-time chemical processes and their atmospheric implications. Nitrogen chemistry was observed during Bonfire Night with nitrogen containing compounds in both gas and aerosol phases and further N2O5 and ClNO2 concentrations, which depleted early next morning due to photolysis of NO3 radicals and ceasing production. Particulate organic oxides of nitrogen (PONs) concentrations of 2.8 µg m−3 were estimated using the m ∕ z 46 : 30 ratios from aerosol mass spectrometer (AMS) measurements, according to previously published methods. Multilinear engine 2 (ME-2) source apportionment was performed to determine organic aerosol (OA) concentrations from different sources after modifying the fragmentation table and it was possible to identify two PON factors representing primary (pPON_ME2) and secondary (sPON_ME2) contributions. A slight improvement in the agreement between the source apportionment of the AMS and a collocated AE-31 Aethalometer was observed after modifying the prescribed fragmentation in the AMS organic spectrum (the fragmentation table) to determine PON sources, which resulted in an r2 =  0.894 between biomass burning organic aerosol (BBOA) and babs_470wb compared to an r2 =  0.861 obtained without the modification. Correlations between OA sources and measurements made using time-of-flight chemical ionisation mass spectrometry with an iodide adduct ion were performed in order to determine possible gas tracers to be used in future ME-2 analyses to constrain solutions. During Bonfire Night, strong correlations (r2) were observed between BBOA and methacrylic acid (0.92), acrylic acid (0.90), nitrous acid (0.86), propionic acid, (0.85) and hydrogen cyanide (0.76). A series of oxygenated species and chlorine compounds showed good correlations with sPON_ME2 and the low volatility oxygenated organic aerosol (LVOOA) factor during Bonfire Night and an event with low pollutant concentrations. Further analysis of pPON_ME2 and sPON_ME2 was performed in order to determine whether these PON sources absorb light near the UV region using an Aethalometer. This hypothesis was tested by doing multilinear regressions between babs_470wb and BBOA, sPON_ME2 and pPON_ME2. Our results suggest that sPON_ME2 does not absorb light at 470 nm, while pPON_ME2 and LVOOA do absorb light at 470 nm. This may inform black carbon (BC) source apportionment studies from Aethalometer measurements, through investigation of the brown carbon contribution to babs_470wb.


Sign in / Sign up

Export Citation Format

Share Document