scholarly journals Measurement report: Biogenic volatile organic compound emission profiles of rapeseed leaf litter and its secondary organic aerosol formation potential

2021 ◽  
Vol 21 (16) ◽  
pp. 12613-12629
Author(s):  
Letizia Abis ◽  
Carmen Kalalian ◽  
Bastien Lunardelli ◽  
Tao Wang ◽  
Liwu Zhang ◽  
...  

Abstract. We analysed the biogenic volatile organic compound (BVOC) emissions from rapeseed leaf litter and their potential to create secondary organic aerosols (SOAs) under three different conditions, i.e., (i) in the presence of UV light irradiation, (ii) in the presence of ozone, and (iii) with both ozone and UV light. These experiments were performed in a controlled atmospheric simulation chamber containing leaf litter samples, where BVOC and aerosol number concentrations were measured for 6 d. Our results show that BVOC emission profiles were affected by UV light irradiation which increased the summed BVOC emissions compared to the experiment with solely O3. Furthermore, the diversity of emitted VOCs from the rapeseed litter also increased in the presence of UV light irradiation. SOA formation was observed when leaf litter was exposed to both UV light and O3, indicating a potential contribution to particle formation or growth at local scales. To our knowledge, this study investigates, for the first time, the effect of UV irradiation and O3 exposure on both VOC emissions and SOA formation for leaf litter samples. A detailed discussion about the processes behind the biological production of the most important VOC is proposed.

2021 ◽  
Author(s):  
Letizia Abis ◽  
Carmen Kalalian ◽  
Tao Wang ◽  
Bastien Lunardelli ◽  
Sebastien Perrier ◽  
...  

<p>The annual global leaf litter production has been estimated between 75 and 135 Pg DM yr<sup>-1</sup> contributing to the 10% of the global annual emission of acetone and methanol. Besides their impact on atmospheric chemistry, little attention has been drawn to leaves litter and their contribution to the bVOC emissions and their SOA formation potential.</p><p>The purpose of this study is to analyze the bVOC (biogenic volatile organic compounds) emissions from rapeseed leaves litter and their contribution to SOA (secondary organic aerosol) formation under three different conditions: (I) the presence of a UV light irradiation (II) the presence of ozone, and (III) a combination of the previous two. To reach this goal, bVOC and aerosol numbers have been measured for 6 days in a controlled atmospheric chamber containing leaf litter samples.</p><p>Results showed that VOC emission profiles were affected by the UV light irradiation, which increased the summed VOC emissions compared to the experiment with O<sub>3</sub>. Furthermore, the diversity of the VOC emitted from the rapeseed litter increased with the UV light irradiation. The highlight of this study is that the SOA formation rate observed when leaf litter was exposed to both UV light and O<sub>3</sub> indicates a potentially large source of atmospheric pollution at the local scale. To our knowledge, this study investigates for the first time the effect of UV irradiation and O<sub>3</sub> exposure on both VOC emissions and SOA formation for leaf litter samples. A detailed discussion about the processes behind the biological production of the most important VOC is proposed.</p>


Ecosystems ◽  
2010 ◽  
Vol 13 (6) ◽  
pp. 860-873 ◽  
Author(s):  
Patrick Faubert ◽  
Päivi Tiiva ◽  
Åsmund Rinnan ◽  
Janne Räsänen ◽  
Jarmo K. Holopainen ◽  
...  

2021 ◽  
Author(s):  
Letizia Abis ◽  
Carmen Kalalian ◽  
Bastien Lunardelli ◽  
Tao Wang ◽  
Liwu Zhang ◽  
...  

Abstract. We analysed the biogenic volatile organic compounds (BVOC) emissions from rapeseed leaves litter and their potential to create secondary organic aerosols (SOA) under three different conditions i.e., (i) in presence of UV light irradiation; (ii) in presence of ozone, and (iii) with both ozone and UV light. These experiments have been performed in a controlled atmospheric simulation chamber containing leaves litter samples, where BVOC and aerosol number concentrations have been measured for 6 days. Our results show that BVOC emission profiles were affected by UV light irradiation, which increased the summed BVOC emissions compared to the experiment with solely O3. Furthermore, the diversity of emitted VOCs from the rapeseed litter increased also in presence of UV light irradiation. SOA formation was observed when leaves litter were exposed to both UV light and O3, indicating a potentially large contribution to particle formation or growth at local scales. To our knowledge, this study investigates for the first time the effect of UV irradiation and O3 exposure on both VOC emissions and SOA formation for leaves litter samples. A detailed discussion about the processes behind the biological production of the most important VOC is proposed.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1427
Author(s):  
Tomas Karlsson ◽  
Leif Klemedtsson ◽  
Riikka Rinnan ◽  
Thomas Holst

In Europe, willow (Salix spp.) trees have been used commercially since the 1980s at a large scale to produce renewable energy. While reducing fossil fuel needs, growing short rotation coppices (SRCs), such as poplar or willow, may have a high impact on local air quality as these species are known to produce high amounts of isoprene, which can lead to the production of tropospheric ozone (O3). Here, we present a long-term leaf-scale study of biogenic volatile organic compound (BVOC) emissions from a Swedish managed willow site with the aim of providing information on the seasonal variability in BVOC emissions during two growing seasons, 2015–2016. Total BVOC emissions during these two seasons were dominated by isoprene (>96% by mass) and the monoterpene (MT) ocimene. The average standardized (STD, temperature of 30 °C and photosynthetically active radiation of 1000 µmol m−2 s−1) emission rate for isoprene was 45.2 (±42.9, standard deviation (SD)) μg gdw−1 h−1. Isoprene varied through the season, mainly depending on the prevailing temperature and light, where the measured emissions peaked in July 2015 and August 2016. The average STD emission for MTs was 0.301 (±0.201) μg gdw−1 h−1 and the MT emissions decreased from spring to autumn. The average STD emission for sesquiterpenes (SQTs) was 0.103 (±0.249) μg gdw−1 h−1, where caryophyllene was the most abundant SQT. The measured emissions of SQTs peaked in August both in 2015 and 2016. Non-terpenoid compounds were grouped as other VOCs (0.751 ± 0.159 μg gdw−1 h−1), containing alkanes, aldehydes, ketones, and other compounds. Emissions from all the BVOC groups decreased towards the end of the growing season. The more sun-adapted leaves in the upper part of the plantation canopy emitted higher rates of isoprene, MTs, and SQTs compared with more shade-adapted leaves in the lower canopy. On the other hand, emissions of other VOCs were lower from the upper part of the canopy compared with the lower part. Light response curves showed that ocimene and α-farnesene increased with light but only for the sun-adapted leaves, since the shade-adapted leaves did not emit ocimene and α-farnesene. An infestation with Melampsora spp. likely induced high emissions of, e.g., hexanal and nonanal in August 2015. The results from this study imply that upscaling BVOC emissions with model approaches should account for seasonality and also include the canopy position of leaves as a parameter to allow for better estimates for the regional and global budgets of ecosystem emissions.


Sign in / Sign up

Export Citation Format

Share Document