scholarly journals Trends, composition, and sources of carbonaceous aerosol at the Birkenes Observatory, northern Europe, 2001–2018

2021 ◽  
Vol 21 (9) ◽  
pp. 7149-7170
Author(s):  
Karl Espen Yttri ◽  
Francesco Canonaco ◽  
Sabine Eckhardt ◽  
Nikolaos Evangeliou ◽  
Markus Fiebig ◽  
...  

Abstract. We present 18 years (2001–2018) of aerosol measurements, including organic and elemental carbon (OC and EC), organic tracers (levoglucosan, arabitol, mannitol, trehalose, glucose, and 2-methyltetrols), trace elements, and ions, at the Birkenes Observatory (southern Norway) – a site representative of the northern European region. The OC/EC (2001–2018) and the levoglucosan (2008–2018) time series are the longest in Europe, with OC/EC available for the PM10, PM2.5 (fine), and PM10–2.5 (coarse) size fractions, providing the opportunity for a nearly 2-decade-long assessment. Using positive matrix factorization (PMF), we identify seven carbonaceous aerosol sources at Birkenes: mineral-dust-dominated aerosol (MIN), traffic/industry-like aerosol (TRA/IND), short-range-transported biogenic secondary organic aerosol (BSOASRT), primary biological aerosol particles (PBAP), biomass burning aerosol (BB), ammonium-nitrate-dominated aerosol (NH4NO3), and (one low carbon fraction) sea salt aerosol (SS). We observed significant (p<0.05), large decreases in EC in PM10 (−3.9 % yr−1) and PM2.5 (−4.2 % yr−1) and a smaller decline in levoglucosan (−2.8 % yr−1), suggesting that OC/EC from traffic and industry is decreasing, whereas the abatement of OC/EC from biomass burning has been slightly less successful. EC abatement with respect to anthropogenic sources is further supported by decreasing EC fractions in PM2.5 (−3.9 % yr−1) and PM10 (−4.5 % yr−1). PMF apportioned 72 % of EC to fossil fuel sources; this was further supported by PMF applied to absorption photometer data, which yielded a two-factor solution with a low aerosol Ångstrøm exponent (AAE = 0.93) fraction, assumed to be equivalent black carbon from fossil fuel combustion (eBCFF), contributing 78 % to eBC mass. The higher AAE fraction (AAE = 2.04) is likely eBC from BB (eBCBB). Source–receptor model calculations (FLEXPART) showed that continental Europe and western Russia were the main source regions of both elevated eBCBB and eBCFF. Dominating biogenic sources explain why there was no downward trend for OC. A relative increase in the OC fraction in PM2.5 (+3.2 % yr−1) and PM10 (+2.4 % yr−1) underscores the importance of biogenic sources at Birkenes (BSOA and PBAP), which were higher in the vegetative season and dominated both fine (53 %) and coarse (78 %) OC. Furthermore, 77 %–91 % of OC in PM2.5, PM10–2.5, and PM10 was attributed to biogenic sources in summer vs. 22 %–37 % in winter. The coarse fraction had the highest share of biogenic sources regardless of season and was dominated by PBAP, except in winter. Our results show a shift in the aerosol composition at Birkenes and, thus, also in the relative source contributions. The need for diverse offline and online carbonaceous aerosol speciation to understand carbonaceous aerosol sources, including their seasonal, annual, and long-term variability, has been demonstrated.

2019 ◽  
Vol 19 (7) ◽  
pp. 4211-4233 ◽  
Author(s):  
Karl Espen Yttri ◽  
David Simpson ◽  
Robert Bergström ◽  
Gyula Kiss ◽  
Sönke Szidat ◽  
...  

Abstract. Carbonaceous aerosol (total carbon, TCp) was source apportioned at nine European rural background sites, as part of the European Measurement and Evaluation Programme (EMEP) Intensive Measurement Periods in fall 2008 and winter/spring 2009. Five predefined fractions were apportioned based on ambient measurements: elemental and organic carbon, from combustion of biomass (ECbb and OCbb) and from fossil-fuel (ECff and OCff) sources, and remaining non-fossil organic carbon (OCrnf), dominated by natural sources. OCrnf made a larger contribution to TCp than anthropogenic sources (ECbb, OCbb, ECff, and OCff) at four out of nine sites in fall, reflecting the vegetative season, whereas anthropogenic sources dominated at all but one site in winter/spring. Biomass burning (OCbb + ECbb) was the major anthropogenic source at the central European sites in fall, whereas fossil-fuel (OCff + ECff) sources dominated at the southernmost and the two northernmost sites. Residential wood burning emissions explained 30 %–50 % of TCp at most sites in the first week of sampling in fall, showing that this source can be the dominant one, even outside the heating season. In winter/spring, biomass burning was the major anthropogenic source at all but two sites, reflecting increased residential wood burning emissions in the heating season. Fossil-fuel sources dominated EC at all sites in fall, whereas there was a shift towards biomass burning for the southernmost sites in winter/spring. Model calculations based on base-case emissions (mainly officially reported national emissions) strongly underpredicted observational derived levels of OCbb and ECbb outside Scandinavia. Emissions based on a consistent bottom-up inventory for residential wood burning (and including intermediate volatility compounds, IVOCs) improved model results compared to the base-case emissions, but modeled levels were still substantially underestimated compared to observational derived OCbb and ECbb levels at the southernmost sites. Our study shows that natural sources are a major contributor to carbonaceous aerosol in Europe, even in fall and in winter/spring, and that residential wood burning emissions are equally as large as or larger than that of fossil-fuel sources, depending on season and region. The poorly constrained residential wood burning emissions for large parts of Europe show the obvious need to improve emission inventories, with harmonization of emission factors between countries likely being the most important step to improve model calculations for biomass burning emissions, and European PM2.5 concentrations in general.


2018 ◽  
Author(s):  
Karl Espen Yttri ◽  
David Simpson ◽  
Robert Bergström ◽  
Gyula Kiss ◽  
Sönke Szidat ◽  
...  

Abstract. Source apportionment (SA) of carbonaceous aerosol was performed as part of the EMEP Intensive Measurement Periods (EIMPs), conducted in fall 2008 and winter/spring 2009. Levels of elemental carbon (EC), particulate organic carbon (OCp), particulate total carbon (TCp), levoglucosan and 14C in PM10, observed at nine European rural background sites, were used as input for the SA, whereas Latin Hypercube Sampling (LHS) was used to statistically treat the multitude of possible combinations resulting when ambient concentrations were combined with appropriate emission ratios. Five predefined sources/subcategories of carbonaceous aerosol were apportioned: Elemental and organic carbon from combustion of biomass (ECbb and OCbb) and from fossil fuel (ECff and OCff) sources, as well as remaining non-fossil organic carbon (OCrnf), typically dominated by natural sources. The carbonaceous aerosol concentration decreased from South to North, as did the concentration of the apportioned carbonaceous aerosol. OCrnf was more abundant in fall compared to winter/spring, reflecting the vegetative season, and made a larger contribution to TCp than anthropogenic sources (here: ECbb, OCbb, ECff and OCff) at four of the sites, whereas anthropogenic sources dominated at all but one sites in winter/spring. Levels of OCbb and ECbb were typically higher in winter/spring than in fall, due to larger residential wood burning emissions in the heating season, whereas there was no consistent seasonal pattern for fossil fuel emissions. Biomass burning (OCbb + ECbb) was the major anthropogenic source at the Central European sites in fall, whereas fossil fuel sources dominated at the southernmost and the two northernmost sites. In winter/spring, biomass burning was the major anthropogenic source at all but two sites. Addressing EC in particular, fossil fuel sources dominated at all sites in fall, whereas there was as shift towards biomass burning in winter/spring for the southernmost sites. Influence of residential wood burning emissions was substantial already in the first week of sampling in fall, constituting 30–50 % of TCp at most sites, showing that this source can be dominating even at a time of the year when the ambient temperature in Europe is still rather high. Model calculations were made, attempting to reproduce LHS-derived OCbb and ECbb, using two different residential wood burning emission inventories. Both simulations strongly under-predicted the LHS-derived values at most sites outside Scandinavia. Emissions based on a consistent bottom-up inventory for residential combustion (and including intermediate volatility compounds, IVOC) improved model results at most sites compared to the base-case emissions (based mainly on officially reported national emissions), but at the three southernmost sites the modelled OCbb and ECbb concentrations were still much lower than the LHS source apportioned results. The current study shows that natural sources is a major contributor to the carbonaceous aerosol in Europe even in fall and in winter/spring, and that residential wood burning emissions can be equally large or larger than that of fossil fuel sources, depending on season and region. Our results suggest that residential wood burning emissions are still poorly constrained for large parts of Europe. The need to improve emission inventories is obvious, with harmonization of emission factors between countries likely being the most important step to improve model calculations, not only for biomass burning emissions, but for European PM2.5 concentrations in general.


2019 ◽  
Author(s):  
Imre Salma ◽  
Anikó Vasanits-Zsigrai ◽  
Attila Machon ◽  
Tamás Varga ◽  
István Major ◽  
...  

Abstract. Fine-fraction aerosol samples were collected, air pollutants and meteorological properties were measured in-situ in regional background environment of the Carpathian Basin, a suburban area and central part of its largest city, Budapest in each season for 1 year-long time interval. The samples were analysed for PM2.5 mass, organic carbon (OC), elemental carbon (EC), water-soluble OC (WSOC), radiocarbon, levoglucosan (LVG) and its stereoisomers, and some chemical elements. Carbonaceous aerosol species made up 36 % of the PM2.5 mass with a modest seasonal variation and with a slightly increasing tendency from the regional background to the city centre (from 32 to 39 %). Coupled radiocarbon-LVG marker method was applied to apportion the total carbon (TC = OC + EC) into contributions of EC and OC from fossil fuel (FF) combustion (ECFF and OCFF, respectively), EC and OC from biomass burning (BB) (ECBB and OCBB, respectively) and OC from biogenic sources (OCBIO). Fossil fuel combustion showed rather constant daily or seasonal mean contributions (of 35 %) to the TC in the whole year in all atmospheric environments, while the daily contributions of BB and biogenic sources changed radically (from


2011 ◽  
Vol 11 (6) ◽  
pp. 16369-16416 ◽  
Author(s):  
K. E. Yttri ◽  
D. Simpson ◽  
J. K. Nøjgaard ◽  
K. Kristensen ◽  
J. Genberg ◽  
...  

Abstract. In the present study, natural and anthropogenic sources of particulate organic carbon (OCp) and elemental carbon (EC) have been quantified based on weekly filter samples of PM10 collected at four Nordic rural background sites (Birkenes (Norway), Hyytiälä (Finland) Vavihill (Sweden), Lille Valby (Denmark)) during late summer (5 August–2 September 2009). Levels of source specific tracers, i.e. cellulose, levoglucosan, mannitol and the 14C/12C ratio of total carbon (TC), have been used as input for source apportionment of the carbonaceous aerosol, whereas Latin Hypercube Sampling (LHS) was used to statistically treat the multitude of possible combinations resulting from this approach. The carbonaceous aerosol (here: TCp; i.e. particulate TC) was totally dominated by natural sources (69–86 %), with biogenic secondary organic aerosol (BSOA) being the single most important source (48–57 %). Interestingly, primary biological aerosol particles (PBAP) were the second most important source (20–32 %). The anthropogenic contribution was mainly attributed to fossil fuel sources (OCff and ECff (10–24 %), whereas no more than 3–7 % was explained by combustion of biomass (OCbb and ECbb in this late summer campaign i.e. emissions from residential wood burning and/or wild/agricultural fires. Fossil fuel sources totally dominated the ambient EC loading, accounting for 4–12 % of TCp, whereas <1.5 % was attributed to combustion of biomass. The carbonaceous aerosol source apportionment showed only minor variation between the four selected sites. However, Hyytiälä and Birkenes showed greater resemblance to each other, as did Lille Valby and Vavihill, the two latter being somewhat more influenced by anthropogenic sources. Ambient levels of organosulphates and nitrooxy-organosulphates in the Nordic rural background environment are reported for the first time in the present study. The most abundant organosulphate compounds were an organosulphate of isoprene and nitrooxy-organosulphates of α- and β-pinene and limonene.


2020 ◽  
Vol 20 (7) ◽  
pp. 4295-4312 ◽  
Author(s):  
Imre Salma ◽  
Anikó Vasanits-Zsigrai ◽  
Attila Machon ◽  
Tamás Varga ◽  
István Major ◽  
...  

Abstract. Fine-fraction aerosol samples were collected, and air pollutants and meteorological properties were measured in situ in the regional background environment of the Carpathian Basin, a suburban area and central part of its largest city, Budapest, in each season for a 1-year-long time interval. The samples were analysed for PM2.5 mass, organic carbon (OC), elemental carbon (EC), water-soluble OC (WSOC), radiocarbon, levoglucosan (LVG) and its stereoisomers, and some chemical elements. Carbonaceous aerosol species made up 36 % of the PM2.5 mass, with a modest seasonal variation and with a slightly increasing tendency from the regional background to the city centre (from 32 % to 39 %). A coupled radiocarbon-LVG marker method was applied to apportion the total carbon (TC = OC + EC) into contributions of EC and OC from fossil fuel (FF) combustion (ECFF and OCFF, respectively), EC and OC from biomass burning (BB) (ECBB and OCBB, respectively), and OC from biogenic sources (OCBIO). Fossil fuel combustion showed rather constant daily or monthly mean contributions (of 35 %) to the TC in the whole year in all atmospheric environments, while the daily contributions of BB and biogenic sources changed radically (from <2 % up to 70 %–85 %) at all locations and over the years. In October, the three major sources contributed equally to the TC in all environments. In January, it was the BB that was the major source, with a share of 70 % at all sites. The contributions from biogenic sources in January were the smallest. In April, FF combustion and biogenic sources were the largest two contributors at all locations with typical shares of 45 %–50 % each. In July, biogenic sources became the major source type with a monotonically increasing tendency (from 56 % to 72 %) from the city centre to the regional background. The share of BB was hardly quantifiable in July. The ECFF made up more than 90 % of EC in April and July, while in October and January, the contributions of ECBB were considerable. Biomass burning in winter and autumn offers the largest and most considerable potential for improving the air quality in cities as well as in rural areas of the Carpathian Basin.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hunter Brown ◽  
Xiaohong Liu ◽  
Rudra Pokhrel ◽  
Shane Murphy ◽  
Zheng Lu ◽  
...  

AbstractUncertainty in the representation of biomass burning (BB) aerosol composition and optical properties in climate models contributes to a range in modeled aerosol effects on incoming solar radiation. Depending on the model, the top-of-the-atmosphere BB aerosol effect can range from cooling to warming. By relating aerosol absorption relative to extinction and carbonaceous aerosol composition from 12 observational datasets to nine state-of-the-art Earth system models/chemical transport models, we identify varying degrees of overestimation in BB aerosol absorptivity by these models. Modifications to BB aerosol refractive index, size, and mixing state improve the Community Atmosphere Model version 5 (CAM5) agreement with observations, leading to a global change in BB direct radiative effect of −0.07 W m−2, and regional changes of −2 W m−2 (Africa) and −0.5 W m−2 (South America/Temperate). Our findings suggest that current modeled BB contributes less to warming than previously thought, largely due to treatments of aerosol mixing state.


2010 ◽  
Vol 10 (12) ◽  
pp. 29923-29969 ◽  
Author(s):  
S. Gilardoni ◽  
E. Vignati ◽  
E. Marmer ◽  
F. Cavalli ◽  
C. Belis ◽  
...  

Abstract. The quantification of sources of carbonaceous aerosol is important to understand their atmospheric concentrations and regulating processes and to study possible effects on climate and air quality, in addition to develop mitigation strategies. In the framework of the European Aerosol Cloud Climate Interaction (EUCAARI) project fine (Dp < 2.5 μm) and coarse (2.5 μm < Dp < 10 μm) aerosol particles were sampled from February to June (wet season) and from August to September (dry season) 2008 in the Central Amazon Basin. The mass of fine particles averaged 2.4 μg m−3 during the wet season and 4.2 μg m−3 during the dry season. The average coarse aerosol mass concentration during wet and dry periods was 7.9 and 7.6 μg m−3, respectively. The overall chemical composition of fine and coarse mass did not show any seasonality with the largest fraction of fine and coarse aerosol mass explained by organic carbon (OC); the average OC to mass ratio was 0.4 and 0.6 in fine and coarse aerosol modes, respectively. The mass absorbing cross section of soot was determined by comparison of elemental carbon and light absorption coefficient measurements and it was equal to 4.7 m2 g−1 at 637 nm. Carbon aerosol sources were identified by Positive Matrix Factorization (PMF) analysis of thermograms: 43% of fine total carbon mass was assigned to biomass burning, 34% to secondary organic aerosol (SOA), and 23% to volatile species that are difficult to apportion. In the coarse mode, primary biogenic aerosol particles (PBAP) dominated the carbonaceous aerosol mass. The results confirmed the importance of PBAP in forested areas. The source apportionment results were employed to evaluate the ability of global chemistry transport models to simulate carbonaceous aerosol sources in a regional tropical background site. The comparison showed an overestimation of elemental carbon (EC) by the TM5 model during the dry season and OC both during the dry and wet periods. The overestimation was likely due to the overestimation of biomass burning emission inventories and SOA production over tropical areas.


2011 ◽  
Vol 11 (24) ◽  
pp. 13339-13357 ◽  
Author(s):  
K. E. Yttri ◽  
D. Simpson ◽  
J. K. Nøjgaard ◽  
K. Kristensen ◽  
J. Genberg ◽  
...  

Abstract. In the present study, natural and anthropogenic sources of particulate organic carbon (OCp) and elemental carbon (EC) have been quantified based on weekly filter samples of PM10 (particles with aerodynamic diameter <10 μm) collected at four Nordic rural background sites [Birkenes (Norway), Hyytiälä (Finland), Vavihill (Sweden), Lille Valby, (Denmark)] during late summer (5 August–2 September 2009). Levels of source specific tracers, i.e. cellulose, levoglucosan, mannitol and the 14C/12C ratio of total carbon (TC), have been used as input for source apportionment of the carbonaceous aerosol, whereas Latin Hypercube Sampling (LHS) was used to statistically treat the multitude of possible combinations resulting from this approach. The carbonaceous aerosol (here: TCp; i.e. particulate TC) was totally dominated by natural sources (69–86%), with biogenic secondary organic aerosol (BSOA) being the single most important source (48–57%). Interestingly, primary biological aerosol particles (PBAP) were the second most important source (20–32%). The anthropogenic contribution was mainly attributed to fossil fuel sources (OCff and ECff) (10–24%), whereas no more than 3–7% was explained by combustion of biomass (OCbb and ECbb) in this late summer campaign i.e. emissions from residential wood burning and/or wild/agricultural fires. Fossil fuel sources totally dominated the ambient EC loading, which accounted for 4–12% of TCp, whereas <1.5% of EC was attributed to combustion of biomass. The carbonaceous aerosol source apportionment showed only minor variation between the four selected sites. However, Hyytiälä and Birkenes showed greater resemblance to each other, as did Lille Valby and Vavihill, the two latter being somewhat more influenced by anthropogenic sources. Ambient levels of organosulphates and nitrooxy-organosulphates in the Nordic rural background environment are reported for the first time in the present study. The most abundant organosulphate compounds were an organosulphate of isoprene and nitrooxy-organosulphates of α- and β-pinene and limonene.


2011 ◽  
Vol 11 (1) ◽  
pp. 2503-2547 ◽  
Author(s):  
S. Gilardoni ◽  
E. Vignati ◽  
F. Cavalli ◽  
J. P. Putaud ◽  
B. R. Larsen ◽  
...  

Abstract. The source contributions to carbonaceous PM2.5 aerosol were investigated at a European background site at the edge of the Po Valley, in Northern Italy, during the period January–December 2007. Carbonaceous aerosol was described as the sum of eight source components: primary (1) and secondary (2) biomass burning organic carbon, biomass burning elemental carbon (3), primary (4) and secondary (5) fossil fuel burning organic carbon, fossil fuel burning elemental carbon (6), primary (7) and secondary (8) biogenic organic carbon. The concentration of each component was quantified using a set of macro tracers (organic carbon OC, elemental carbon EC, and levoglucosan), micro tracers (arabitol and mannitol), and 14C measurements. This was the first time that 14C measurements were performed on a long time series of data able to represent the entire annual cycle. This set of 6 tracers, together with assumed uncertainty ranges of the ratios of OC-to-EC, and the fraction of modern carbon in the 8 source categories, provides strong constraints to the source contributions to carbonaceous aerosol. The uncertainty of contributions was assessed with a Quasi-Monte Carlo (QMC) method accounting for the variability of OC and EC emission factors, and the uncertainty of reference fractions of modern carbon. During winter biomass burning composed 50% of the total carbon (TC) concentration, while in summer secondary biogenic OC accounted for 45% of TC. The contribution of primary biogenic aerosol particles was negligible during the entire year. Moreover, aerosol associated with fossil fuel burning represented 26% and 43% of TC in winter and summer, respectively. The comparison of source apportionment results in different urban and rural areas showed that the sampling site was mainly affected by local aerosol sources during winter and regional air masses from the nearby Po Valley in summer. This observation was further confirmed by back-trajectory analysis applying the Potential Source Contribution Function method to identify potential source regions. The contribution of secondary organic aerosol (SOA) to the organic mass (OM) was significant during the entire year. SOA accounted for 23% and 83% of OM during winter and summer, respectively. While the summer SOA was dominated by biogenic sources, winter SOA was mainly due to biomass and fossil fuel burning. This indicates that the oxidation of intermediate volatility organic compounds co-emitted with primary organics is a significant source of SOA, as suggested by recent model results and Aerosol Mass Spectrometer measurements in urban regions. Comparison with previous global model simulations, indicates a strong underestimate of wintertime primary aerosol emissions in this region.


Sign in / Sign up

Export Citation Format

Share Document