scholarly journals The EMEP Intensive Measurement Period campaign, 2008–2009: Characterizing the carbonaceous aerosol at nine rural sites in Europe

Author(s):  
Karl Espen Yttri ◽  
David Simpson ◽  
Robert Bergström ◽  
Gyula Kiss ◽  
Sönke Szidat ◽  
...  

Abstract. Source apportionment (SA) of carbonaceous aerosol was performed as part of the EMEP Intensive Measurement Periods (EIMPs), conducted in fall 2008 and winter/spring 2009. Levels of elemental carbon (EC), particulate organic carbon (OCp), particulate total carbon (TCp), levoglucosan and 14C in PM10, observed at nine European rural background sites, were used as input for the SA, whereas Latin Hypercube Sampling (LHS) was used to statistically treat the multitude of possible combinations resulting when ambient concentrations were combined with appropriate emission ratios. Five predefined sources/subcategories of carbonaceous aerosol were apportioned: Elemental and organic carbon from combustion of biomass (ECbb and OCbb) and from fossil fuel (ECff and OCff) sources, as well as remaining non-fossil organic carbon (OCrnf), typically dominated by natural sources. The carbonaceous aerosol concentration decreased from South to North, as did the concentration of the apportioned carbonaceous aerosol. OCrnf was more abundant in fall compared to winter/spring, reflecting the vegetative season, and made a larger contribution to TCp than anthropogenic sources (here: ECbb, OCbb, ECff and OCff) at four of the sites, whereas anthropogenic sources dominated at all but one sites in winter/spring. Levels of OCbb and ECbb were typically higher in winter/spring than in fall, due to larger residential wood burning emissions in the heating season, whereas there was no consistent seasonal pattern for fossil fuel emissions. Biomass burning (OCbb + ECbb) was the major anthropogenic source at the Central European sites in fall, whereas fossil fuel sources dominated at the southernmost and the two northernmost sites. In winter/spring, biomass burning was the major anthropogenic source at all but two sites. Addressing EC in particular, fossil fuel sources dominated at all sites in fall, whereas there was as shift towards biomass burning in winter/spring for the southernmost sites. Influence of residential wood burning emissions was substantial already in the first week of sampling in fall, constituting 30–50 % of TCp at most sites, showing that this source can be dominating even at a time of the year when the ambient temperature in Europe is still rather high. Model calculations were made, attempting to reproduce LHS-derived OCbb and ECbb, using two different residential wood burning emission inventories. Both simulations strongly under-predicted the LHS-derived values at most sites outside Scandinavia. Emissions based on a consistent bottom-up inventory for residential combustion (and including intermediate volatility compounds, IVOC) improved model results at most sites compared to the base-case emissions (based mainly on officially reported national emissions), but at the three southernmost sites the modelled OCbb and ECbb concentrations were still much lower than the LHS source apportioned results. The current study shows that natural sources is a major contributor to the carbonaceous aerosol in Europe even in fall and in winter/spring, and that residential wood burning emissions can be equally large or larger than that of fossil fuel sources, depending on season and region. Our results suggest that residential wood burning emissions are still poorly constrained for large parts of Europe. The need to improve emission inventories is obvious, with harmonization of emission factors between countries likely being the most important step to improve model calculations, not only for biomass burning emissions, but for European PM2.5 concentrations in general.

2019 ◽  
Vol 19 (7) ◽  
pp. 4211-4233 ◽  
Author(s):  
Karl Espen Yttri ◽  
David Simpson ◽  
Robert Bergström ◽  
Gyula Kiss ◽  
Sönke Szidat ◽  
...  

Abstract. Carbonaceous aerosol (total carbon, TCp) was source apportioned at nine European rural background sites, as part of the European Measurement and Evaluation Programme (EMEP) Intensive Measurement Periods in fall 2008 and winter/spring 2009. Five predefined fractions were apportioned based on ambient measurements: elemental and organic carbon, from combustion of biomass (ECbb and OCbb) and from fossil-fuel (ECff and OCff) sources, and remaining non-fossil organic carbon (OCrnf), dominated by natural sources. OCrnf made a larger contribution to TCp than anthropogenic sources (ECbb, OCbb, ECff, and OCff) at four out of nine sites in fall, reflecting the vegetative season, whereas anthropogenic sources dominated at all but one site in winter/spring. Biomass burning (OCbb + ECbb) was the major anthropogenic source at the central European sites in fall, whereas fossil-fuel (OCff + ECff) sources dominated at the southernmost and the two northernmost sites. Residential wood burning emissions explained 30 %–50 % of TCp at most sites in the first week of sampling in fall, showing that this source can be the dominant one, even outside the heating season. In winter/spring, biomass burning was the major anthropogenic source at all but two sites, reflecting increased residential wood burning emissions in the heating season. Fossil-fuel sources dominated EC at all sites in fall, whereas there was a shift towards biomass burning for the southernmost sites in winter/spring. Model calculations based on base-case emissions (mainly officially reported national emissions) strongly underpredicted observational derived levels of OCbb and ECbb outside Scandinavia. Emissions based on a consistent bottom-up inventory for residential wood burning (and including intermediate volatility compounds, IVOCs) improved model results compared to the base-case emissions, but modeled levels were still substantially underestimated compared to observational derived OCbb and ECbb levels at the southernmost sites. Our study shows that natural sources are a major contributor to carbonaceous aerosol in Europe, even in fall and in winter/spring, and that residential wood burning emissions are equally as large as or larger than that of fossil-fuel sources, depending on season and region. The poorly constrained residential wood burning emissions for large parts of Europe show the obvious need to improve emission inventories, with harmonization of emission factors between countries likely being the most important step to improve model calculations for biomass burning emissions, and European PM2.5 concentrations in general.


2021 ◽  
Vol 21 (9) ◽  
pp. 7149-7170
Author(s):  
Karl Espen Yttri ◽  
Francesco Canonaco ◽  
Sabine Eckhardt ◽  
Nikolaos Evangeliou ◽  
Markus Fiebig ◽  
...  

Abstract. We present 18 years (2001–2018) of aerosol measurements, including organic and elemental carbon (OC and EC), organic tracers (levoglucosan, arabitol, mannitol, trehalose, glucose, and 2-methyltetrols), trace elements, and ions, at the Birkenes Observatory (southern Norway) – a site representative of the northern European region. The OC/EC (2001–2018) and the levoglucosan (2008–2018) time series are the longest in Europe, with OC/EC available for the PM10, PM2.5 (fine), and PM10–2.5 (coarse) size fractions, providing the opportunity for a nearly 2-decade-long assessment. Using positive matrix factorization (PMF), we identify seven carbonaceous aerosol sources at Birkenes: mineral-dust-dominated aerosol (MIN), traffic/industry-like aerosol (TRA/IND), short-range-transported biogenic secondary organic aerosol (BSOASRT), primary biological aerosol particles (PBAP), biomass burning aerosol (BB), ammonium-nitrate-dominated aerosol (NH4NO3), and (one low carbon fraction) sea salt aerosol (SS). We observed significant (p<0.05), large decreases in EC in PM10 (−3.9 % yr−1) and PM2.5 (−4.2 % yr−1) and a smaller decline in levoglucosan (−2.8 % yr−1), suggesting that OC/EC from traffic and industry is decreasing, whereas the abatement of OC/EC from biomass burning has been slightly less successful. EC abatement with respect to anthropogenic sources is further supported by decreasing EC fractions in PM2.5 (−3.9 % yr−1) and PM10 (−4.5 % yr−1). PMF apportioned 72 % of EC to fossil fuel sources; this was further supported by PMF applied to absorption photometer data, which yielded a two-factor solution with a low aerosol Ångstrøm exponent (AAE = 0.93) fraction, assumed to be equivalent black carbon from fossil fuel combustion (eBCFF), contributing 78 % to eBC mass. The higher AAE fraction (AAE = 2.04) is likely eBC from BB (eBCBB). Source–receptor model calculations (FLEXPART) showed that continental Europe and western Russia were the main source regions of both elevated eBCBB and eBCFF. Dominating biogenic sources explain why there was no downward trend for OC. A relative increase in the OC fraction in PM2.5 (+3.2 % yr−1) and PM10 (+2.4 % yr−1) underscores the importance of biogenic sources at Birkenes (BSOA and PBAP), which were higher in the vegetative season and dominated both fine (53 %) and coarse (78 %) OC. Furthermore, 77 %–91 % of OC in PM2.5, PM10–2.5, and PM10 was attributed to biogenic sources in summer vs. 22 %–37 % in winter. The coarse fraction had the highest share of biogenic sources regardless of season and was dominated by PBAP, except in winter. Our results show a shift in the aerosol composition at Birkenes and, thus, also in the relative source contributions. The need for diverse offline and online carbonaceous aerosol speciation to understand carbonaceous aerosol sources, including their seasonal, annual, and long-term variability, has been demonstrated.


2011 ◽  
Vol 11 (1) ◽  
pp. 2503-2547 ◽  
Author(s):  
S. Gilardoni ◽  
E. Vignati ◽  
F. Cavalli ◽  
J. P. Putaud ◽  
B. R. Larsen ◽  
...  

Abstract. The source contributions to carbonaceous PM2.5 aerosol were investigated at a European background site at the edge of the Po Valley, in Northern Italy, during the period January–December 2007. Carbonaceous aerosol was described as the sum of eight source components: primary (1) and secondary (2) biomass burning organic carbon, biomass burning elemental carbon (3), primary (4) and secondary (5) fossil fuel burning organic carbon, fossil fuel burning elemental carbon (6), primary (7) and secondary (8) biogenic organic carbon. The concentration of each component was quantified using a set of macro tracers (organic carbon OC, elemental carbon EC, and levoglucosan), micro tracers (arabitol and mannitol), and 14C measurements. This was the first time that 14C measurements were performed on a long time series of data able to represent the entire annual cycle. This set of 6 tracers, together with assumed uncertainty ranges of the ratios of OC-to-EC, and the fraction of modern carbon in the 8 source categories, provides strong constraints to the source contributions to carbonaceous aerosol. The uncertainty of contributions was assessed with a Quasi-Monte Carlo (QMC) method accounting for the variability of OC and EC emission factors, and the uncertainty of reference fractions of modern carbon. During winter biomass burning composed 50% of the total carbon (TC) concentration, while in summer secondary biogenic OC accounted for 45% of TC. The contribution of primary biogenic aerosol particles was negligible during the entire year. Moreover, aerosol associated with fossil fuel burning represented 26% and 43% of TC in winter and summer, respectively. The comparison of source apportionment results in different urban and rural areas showed that the sampling site was mainly affected by local aerosol sources during winter and regional air masses from the nearby Po Valley in summer. This observation was further confirmed by back-trajectory analysis applying the Potential Source Contribution Function method to identify potential source regions. The contribution of secondary organic aerosol (SOA) to the organic mass (OM) was significant during the entire year. SOA accounted for 23% and 83% of OM during winter and summer, respectively. While the summer SOA was dominated by biogenic sources, winter SOA was mainly due to biomass and fossil fuel burning. This indicates that the oxidation of intermediate volatility organic compounds co-emitted with primary organics is a significant source of SOA, as suggested by recent model results and Aerosol Mass Spectrometer measurements in urban regions. Comparison with previous global model simulations, indicates a strong underestimate of wintertime primary aerosol emissions in this region.


2003 ◽  
Vol 3 (4) ◽  
pp. 3451-3467 ◽  
Author(s):  
S. Beirle ◽  
U. Platt ◽  
M. Wenig ◽  
T. Wagner

Abstract. Nitrogen oxides (NO+NO2=NOx) are important trace gases in the troposphere with impact on human health, atmospheric chemistry and climate. Besides natural sources (lightning, soil emissions) and biomass burning, fossil fuel combustion is estimated to be responsible for about 50\\% of the total production of  NOx. Since human activity in industrialized countries largely follows an artificial seven-day cycle, fossil fuel combustion is expected to  be reduced during weekends. This "weekend effect" is well known from local, ground based measurements, but has never been analysed on a global scale before. The Global Ozone Monitoring Experiment (GOME) on board the ESA-satellite ERS-2 allows measurements of  NO2 column densities. Applying sophisticated algorithms, vertical column densities (VCD) of tropospheric NO2 can be determined. We demonstrate the statistical analysis of weekly cycles of tropospheric NO2 VCDs for different regions of the world. In the cycles of the industrialized regions and cities in the US, Europe and Japan a clear Sunday minimum of tropospheric NO2 VCD can be seen. Sunday NO2 VCDs are about 25–50% lower than working day levels. Metropolitan areas with other religious and cultural backgrounds (Jerusalem, Mecca) show different weekly patterns corresponding to different days of rest. In China, no weekly pattern can be found. The presence of a weekly cycle in the measured tropospheric NO2 VCD allows the identification of anthropogenic sources. In addition, the fraction of emissions subjected to a weekly cycle (mainly transport, power generation) with respect to a constant background (all kind of natural sources, biomass burning, heavy industry) can be estimated. Furthermore, we estimated the lifetime of tropospheric NO2 by analysing the mean weekly cycle over Germany in detail, obtaining a value of about 12 h.


2019 ◽  
Author(s):  
Imre Salma ◽  
Anikó Vasanits-Zsigrai ◽  
Attila Machon ◽  
Tamás Varga ◽  
István Major ◽  
...  

Abstract. Fine-fraction aerosol samples were collected, air pollutants and meteorological properties were measured in-situ in regional background environment of the Carpathian Basin, a suburban area and central part of its largest city, Budapest in each season for 1 year-long time interval. The samples were analysed for PM2.5 mass, organic carbon (OC), elemental carbon (EC), water-soluble OC (WSOC), radiocarbon, levoglucosan (LVG) and its stereoisomers, and some chemical elements. Carbonaceous aerosol species made up 36 % of the PM2.5 mass with a modest seasonal variation and with a slightly increasing tendency from the regional background to the city centre (from 32 to 39 %). Coupled radiocarbon-LVG marker method was applied to apportion the total carbon (TC = OC + EC) into contributions of EC and OC from fossil fuel (FF) combustion (ECFF and OCFF, respectively), EC and OC from biomass burning (BB) (ECBB and OCBB, respectively) and OC from biogenic sources (OCBIO). Fossil fuel combustion showed rather constant daily or seasonal mean contributions (of 35 %) to the TC in the whole year in all atmospheric environments, while the daily contributions of BB and biogenic sources changed radically (from


2019 ◽  
Vol 19 (24) ◽  
pp. 15247-15270 ◽  
Author(s):  
Jianhui Jiang ◽  
Sebnem Aksoyoglu ◽  
Imad El-Haddad ◽  
Giancarlo Ciarelli ◽  
Hugo A. C. Denier van der Gon ◽  
...  

Abstract. Source apportionment of organic aerosols (OAs) is of great importance to better understand the health impact and climate effects of particulate matter air pollution. Air quality models are used as potential tools to identify OA components and sources at high spatial and temporal resolution; however, they generally underestimate OA concentrations, and comparisons of their outputs with an extended set of measurements are still rare due to the lack of long-term experimental data. In this study, we addressed such challenges at the European level. Using the regional Comprehensive Air Quality Model with Extensions (CAMx) and a volatility basis set (VBS) scheme which was optimized based on recent chamber experiments with wood burning and diesel vehicle emissions, and which contains more source-specific sets compared to previous studies, we calculated the contribution of OA components and defined their sources over a whole-year period (2011). We modeled separately the primary and secondary OA contributions from old and new diesel and gasoline vehicles, biomass burning (mostly residential wood burning and agricultural waste burning excluding wildfires), other anthropogenic sources (mainly shipping, industry and energy production) and biogenic sources. An important feature of this study is that we evaluated the model results with measurements over a longer period than in previous studies, which strengthens our confidence in our modeled source apportionment results. Comparison against positive matrix factorization (PMF) analyses of aerosol mass spectrometric measurements at nine European sites suggested that the modified VBS scheme improved the model performance for total OA as well as the OA components, including hydrocarbon-like (HOA), biomass burning (BBOA) and oxygenated components (OOA). By using the modified VBS scheme, the mean bias of OOA was reduced from −1.3 to −0.4 µg m−3 corresponding to a reduction of mean fractional bias from −45 % to −20 %. The winter OOA simulation, which was largely underestimated in previous studies, was improved by 29 % to 42 % among the evaluated sites compared to the default parameterization. Wood burning was the dominant OA source in winter (61 %), while biogenic emissions contributed ∼ 55 % to OA during summer in Europe on average. In both seasons, other anthropogenic sources comprised the second largest component (9 % in winter and 19 % in summer as domain average), while the average contributions of diesel and gasoline vehicles were rather small (∼ 5 %) except for the metropolitan areas where the highest contribution reached 31 %. The results indicate the need to improve the emission inventory to include currently missing and highly uncertain local emissions, as well as further improvement of VBS parameterization for winter biomass burning. Although this study focused on Europe, it can be applied in any other part of the globe. This study highlights the ability of long-term measurements and source apportionment modeling to validate and improve emission inventories, and identify sources not yet properly included in existing inventories.


2017 ◽  
Author(s):  
Ling Qi ◽  
Qinbin Li ◽  
Daven K. Henze ◽  
Hsien-Liang Tseng ◽  
Cenlin He

Abstract. We quantify source contributions to springtime (April 2008) surface black carbon (BC) in the Arctic by interpreting surface observations of BC at five receptor sites (Denali, Barrow, Alert, Zeppelin, and Summit) using a global chemical transport model (GEOS-Chem) and its adjoint. Contributions to BC at Barrow, Alert, and Zeppelin are dominated by Asian anthropogenic sources (40–43 %) before April 18 and by Siberian open biomass burning emissions (29–41 %) afterward. In contrast, Summit, a mostly free tropospheric site, has predominantly an Asian anthropogenic source contribution (24–68 %, with an average of 45 %). We compute the adjoint sensitivity of BC concentrations at the five sites during a pollution episode (April 20–25) to global emissions from March 1 to April 25. The associated contributions are the combined results of these sensitivities and BC emissions. Local and regional anthropogenic sources in Alaska are the largest anthropogenic sources of BC at Denali (63 %), and natural gas flaring emissions in the Western Extreme North of Russia (WENR) are the largest anthropogenic sources of BC at Zeppelin (26 %) and Alert (13 %). We find that long-range transport of emissions from Beijing-Tianjin-Hebei (also known as Jing-Jin-Ji), the biggest urbanized region in Northern China, contribute significantly (~ 10 %) to surface BC across the Arctic. On average it takes ~ 12 days for Asian anthropogenic emissions and Siberian biomass burning emissions to reach Arctic lower troposphere, supporting earlier studies. Natural gas flaring emissions from the WENR reach Zeppelin in about a week. We find that episodic, direct transport events dominate BC at Denali (87 %), a site outside the Arctic front, a strong transport barrier. The relative contribution of direct transport to surface BC within the Arctic front is much smaller (~ 50 % at Barrow and Zeppelin and ~ 10 % at Alert). The large contributions from Asian anthropogenic sources are predominately in the form of ‘chronic’ pollution (~ 40 % at Barrow and 65 % at Alert and 57 % at Zeppelin) on 1–2 month timescales. As such, it is likely that previous studies using 5- or 10-day trajectory analyses strongly underestimated the contribution from Asia to surface BC in the Arctic. Both finer temporal resolution of biomass burning emissions and accounting for the Wegener-Bergeron-Findeisen (WBF) process in wet scavenging improve the source attribution estimates.


2014 ◽  
Vol 14 (3) ◽  
pp. 1517-1525 ◽  
Author(s):  
M. Zhong ◽  
M. Jang

Abstract. Wood-burning aerosol produced under smoldering conditions was photochemically aged with different relative humidity (RH) and NOx conditions using a 104 m3 dual outdoor chamber under natural sunlight. Light absorption of organic carbon (OC) was measured over the course of photooxidation using a UV–visible spectrometer connected to an integrating sphere. At high RH, the color decayed rapidly. NOx slightly prolonged the color of wood smoke, suggesting that NOx promotes the formation of chromophores via secondary processes. Overall, the mass absorption cross section (integrated between 280 and 600 nm) of OC increased by 11–54% (except high RH) in the morning and then gradually decreased by 19–68% in the afternoon. This dynamic change in light absorption of wood-burning OC can be explained by two mechanisms: chromophore formation and sunlight bleaching. To investigate the effect of chemical transformation on light absorption, wood smoke particles were characterized using various spectrometers. The intensity of fluorescence, which is mainly related to polycyclic aromatic hydrocarbons (PAHs), rapidly decreased with time, indicating the potential bleaching of PAHs. A decline of levoglucosan concentrations evinced the change of primary organic aerosol with time. The aerosol water content measured by Fourier transform infrared spectroscopy showed that wood-burning aerosol became less hygroscopic as photooxidation proceeded. A similar trend in light absorption changes has been observed in ambient smoke aerosol originating from the 2012 County Line wildfire in Florida. We conclude that the biomass-burning OC becomes less light absorbing after 8–9 h sunlight exposure compared to fresh wood-burning OC.


2017 ◽  
Author(s):  
Jovanna Arndt ◽  
Jean Sciare ◽  
Marc Mallet ◽  
Greg C. Roberts ◽  
Nicolas Marchand ◽  
...  

Abstract. An aerosol time-of-flight mass spectrometer (ATOFMS) was employed to provide real-time single particle mixing state and thereby source information for aerosols impacting the western Mediterranean basin during the ChArMEx-ADRIMED and SAF-MED campaigns in summer 2013. The ATOFMS measurements were made at a ground-based remote site on the northern tip of Corsica Island. 27 distinct ATOFMS particle classes were identified and subsequently grouped into 8 general categories: EC-rich (elemental carbon), K-rich, Na-rich, Amines, OC-rich (organic carbon), V-rich, Fe-rich and Ca-rich. Mass concentrations were reconstructed for the ATOFMS particle classes and found to be in good agreement with other co-located quantitative measurements (PM1, black carbon (BC), organic carbon, sulfate mass and ammonium mass). Total ATOFMS reconstructed mass (PM2.5) accounted for 70–90 % of measured PM10 mass and was comprised of regionally transported fossil fuel (EC-rich) and biomass burning (K-rich) particles. The accumulation of these transported particles was favoured by repeated and extended periods of air mass stagnation over the western Mediterranean during the sampling campaigns. The single particle mass spectra proved to be valuable source markers, allowing the identification of fossil fuel and biomass burning combustion sources, and therefore highly complementary to quantitative measurements made by particle-into-liquid sampler ion chromatography (PILS-IC) and an aerosol chemical speciation monitor (ACSM), which have demonstrated that PM1 and PM10 were comprised predominantly of sulfate, ammonium and OC. Good temporal agreement was observed between ATOFMS EC-rich and K-rich particle mass concentrations and combined mass concentrations of BC, sulfate, ammonium and low volatility oxygenated organic aerosol (LV-OOA). This combined information suggests that combustion of fossil fuels and biomass produced primary EC- and OC-containing particles, which then accumulated ammonium, sulfate and alkylamines during regional transport. Three other sources were also identified: local biomass burning, marine and shipping. Local combustion particles (emitted in Corsica) contributed little to PM2.5 particle number and mass concentrations but were easily distinguished from regional combustion particles. Marine emissions comprised fresh and aged sea salt; the former detected mostly during one 5-day event during which it accounted for 50–80 % of sea salt aerosol mass, while the latter detected throughout the sampling period. Dust was not efficiently detected by the ATOFMS, and support measurements showed that it was mainly in the PM2.5–10 fraction. Shipping particles, identified using markers for heavy fuel oil combustion, were associated with regional emissions, and represented only a small fraction of PM2.5 particle number and mass concentration at the site.


2014 ◽  
Vol 14 (4) ◽  
pp. 1819-1836 ◽  
Author(s):  
B. Kunwar ◽  
K. Kawamura

Abstract. Ambient aerosol samples (TSP, n = 50) were collected for 12 months at subtropical Okinawa Island, Japan, an outflow region of Asian dusts in the western North Pacific and analysed for organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), water-soluble total nitrogen (WSTN), water-soluble organic nitrogen (WSON) and major ions to better understand the formation and transformation of East Asian aerosols during long-range atmospheric transport. Concentration ranges of these components are; OC: 0.76–7.1 μg m−3 (av. 1.7 ± 1.0 μg m−3), EC: 0.07–0.96 μg m−3 (0.28 ± 0.19 μg m−3), WSOC: 0.27–1.9 μg m−3 (0.73 ± 0.38 μg m−3), WSTN: 0.77 to 3.0 μg m−3 (0.58 ± 0.46 μg m−3) and WSON: 0.0–2.2 μg m−3 (0.12 ± 0.23 μg m−3). Higher OC concentrations were obtained in active biota seasons; spring (av. 2.4 μg m−3) and summer (1.8 μg m−3). EC and WSOC concentrations maximized in spring (av. 0.41 μg m−3 and 0.95 μg m−3, respectively) followed by winter (0. 70 and 0.90 μg m−3) whereas they became lowest in summer (0.19 and 0.52 μg m−3). In contrast, WSTN concentrations were highest in winter (0.86 μg m−3) and lowest in summer (0.37 μg m−3) and autumn (0.34 μg m−3). Concentrations of WSON are higher in early summer (av. 0.26 μg m−3) due to the emission from marine biota. The high ratios of OC / EC (av. 7.6) and WSOC / OC (44%) suggest a secondary formation of organic aerosols. Strong correlation between OC and MSA- (0.81) in spring suggests that springtime aerosols are influenced by additional marine and terrestrial biogenic sources. The positive correlation of Ca2+ and TSP in spring (r = = 0.81) demonstrates a significant contribution of Asian dust whereas high abundances of NO3- and nss-SO42- in winter suggest an important contribution from anthropogenic sources including biomass burning, vehicular emission and coal combustion. NH4-N/WSTN ratios peaked in winter (0.56), indicating a significant contribution of biomass burning to WSTN in cold season. In contrast, higher NO3-N/WSTN ratio in spring than winter suggests that the atmospheric transport of vehicular emissions maximizes in spring. Correlation analyses of major ions suggest that NH4+ and Ca2+ play major role in the neutralization of acidic aerosols forming NH4HSO4, (NH4)2SO4 and CaSO4.


Sign in / Sign up

Export Citation Format

Share Document