scholarly journals Data assimilation of dust aerosol observations for the CUACE/dust forecasting system

2008 ◽  
Vol 8 (13) ◽  
pp. 3473-3482 ◽  
Author(s):  
T. Niu ◽  
S. L. Gong ◽  
G. F. Zhu ◽  
H. L. Liu ◽  
X. Q. Hu ◽  
...  

Abstract. A data assimilation system (DAS) was developed for the Chinese Unified Atmospheric Chemistry Environment – Dust (CUACE/Dust) forecast system and applied in the operational forecasts of sand and dust storm (SDS) in spring 2006. The system is based on a three dimensional variational method (3D-Var) and uses extensively the measurements of surface visibility (phenomena) and dust loading retrieval from the Chinese geostationary satellite FY-2C. By a number of case studies, the DAS was found to provide corrections to both under- and over-estimates of SDS, presenting a major improvement to the forecasting capability of CUACE/Dust in the short-term variability in the spatial distribution and intensity of dust concentrations in both source regions and downwind areas. The seasonal mean Threat Score (TS) over the East Asia in spring 2006 increased from 0.22 to 0.31 by using the data assimilation system, a 41% enhancement. The forecast results with DAS usually agree with the dust loading retrieved from FY-2C and visibility distribution from surface meteorological stations, which indicates that the 3D-Var method is very powerful by the unification of observation and numerical model to improve the performance of forecast model.

2007 ◽  
Vol 7 (3) ◽  
pp. 8309-8332 ◽  
Author(s):  
T. Niu ◽  
S. L. Gong ◽  
G. F. Zhu ◽  
H. L. Liu ◽  
X. Q. Hu ◽  
...  

Abstract. A data assimilation system (DAS) was developed for the Chinese Unified Atmospheric Chemistry Environment – Dust (CUACE/Dust) forecast system and applied in the operational forecasts of sand and dust storm (SDS) in spring 2006. The system is based on a three dimensional variational method (3D-Var) and uses extensively the measurements of surface visibility and dust loading retrieval from the Chinese geostationary satellite FY-2C. The results show that a major improvement to the capability of CUACE/Dust in forecasting the short-term variability in the spatial distribution and intensity of dust concentrations has been achieved, especially in those areas far from the source regions. The seasonal mean Threat Score (TS) over the East Asia in spring 2006 increased from 0.22 to 0.31 by using the data assimilation system, a 41% enhancement. The assimilation results usually agree with the dust loading retrieved from FY-2C and visibility distribution from surface meteorological stations, which indicates that the 3D-Var method is very powerful for the unification of observation and numerical modeling results.


2020 ◽  
Author(s):  
Tao Niu ◽  
Xiaoye Zhang ◽  
Shanling Gong ◽  
Yaqiang Wang ◽  
Hongli Liu ◽  
...  

<p>A data assimilation system (DAS) was developed for the Chinese Unified Atmospheric Chemistry Environment– Dust (CUACE/Dust) forecast system and applied in the operational forecasts of sand and dust storm (SDS) in spring in Asia. The system is based on a three dimensional variational method (3D-Var) and uses extensively the measurements of surface visibility (phenomena) and dust loading retrieval from the Chinese geostationary satellite FY-2C. By a number of case studies, the DAS was found to provide corrections to both under- and over-estimates of SDS, presenting a major improvement to the forecasting capability of CUACE/Dust in the short-term variability in the spatial distribution and intensity of dust concentrations in both source regions and downwind areas.  By now The DAS was upgrade to assimilate FY-4A dust aerosol observations. The seasonal mean Threat Score (TS) over the East Asia in spring increased when DAS was used. The forecast results with DAS usually agree with the dust loading retrieved from FY and visibility distribution from surface meteorological stations, which indicates that the 3D-Var method is very powerful by the unification of observation and numerical model to improve the performance of forecast model.</p>


Author(s):  
Z. Zang ◽  
X. Pan ◽  
W. You ◽  
Y. Liang

A three-dimensional variational data assimilation system is implemented within the Weather Research and Forecasting/Chemistry model, and the control variables consist of eight species of the Model for Simulation Aerosol Interactions and Chemistry scheme. In the experiments, the three-dimensional profiles of aircraft speciated observations and surface concentration observations acquired during the California Research at the Nexus of Air Quality and Climate Change field campaign are assimilated. The data assimilation experiments are performed at 02:00 local time 2 June 2010, assimilating surface observations at 02:00 and aircraft observations from 01:30 to 02:30 local time. The results show that the assimilation of both aircraft and surface observations improves the subsequent forecasts. The improved forecast skill resulting from the assimilation of the aircraft profiles persists a time longer than the assimilation of the surface observations, which suggests the necessity of vertical profile observations for extending aerosol forecasting time.


2008 ◽  
Vol 53 (22) ◽  
pp. 3446-3457 ◽  
Author(s):  
JiShan Xue ◽  
ShiYu Zhuang ◽  
GuoFu Zhu ◽  
Hua Zhang ◽  
ZhiQuan Liu ◽  
...  

2005 ◽  
Vol 133 (4) ◽  
pp. 829-843 ◽  
Author(s):  
Milija Zupanski ◽  
Dusanka Zupanski ◽  
Tomislava Vukicevic ◽  
Kenneth Eis ◽  
Thomas Vonder Haar

A new four-dimensional variational data assimilation (4DVAR) system is developed at the Cooperative Institute for Research in the Atmosphere (CIRA)/Colorado State University (CSU). The system is also called the Regional Atmospheric Modeling Data Assimilation System (RAMDAS). In its present form, the 4DVAR system is employing the CSU/Regional Atmospheric Modeling System (RAMS) nonhydrostatic primitive equation model. The Weather Research and Forecasting (WRF) observation operator is used to access the observations, adopted from the WRF three-dimensional variational data assimilation (3DVAR) algorithm. In addition to the initial conditions adjustment, the RAMDAS includes the adjustment of model error (bias) and lateral boundary conditions through an augmented control variable definition. Also, the control variable is defined in terms of the velocity potential and streamfunction instead of the horizontal winds. The RAMDAS is developed after the National Centers for Environmental Prediction (NCEP) Eta 4DVAR system, however with added improvements addressing its use in a research environment. Preliminary results with RAMDAS are presented, focusing on the minimization performance and the impact of vertical correlations in error covariance modeling. A three-dimensional formulation of the background error correlation is introduced and evaluated. The Hessian preconditioning is revisited, and an alternate algebraic formulation is presented. The results indicate a robust minimization performance.


Sign in / Sign up

Export Citation Format

Share Document