sand and dust storm
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 17)

H-INDEX

8
(FIVE YEARS 2)

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 108
Author(s):  
Jikang Wang ◽  
Bihui Zhang ◽  
Hengde Zhang ◽  
Cong Hua ◽  
Linchang An ◽  
...  

Northern China experienced a severe sand and dust storm (SDS) on 14/15 March 2021. It was difficult to simulate this severe SDS event accurately. This study compared the performances of three dust-emission schemes on simulating PM10 concentration during this SDS event by implementing three vertical dust flux parameterizations in the Comprehensive Air-Quality Model with Extensions (CAMx) model. Additionally, a statistical gusty-wind model was implemented in the dust-emission scheme, and it was used to quantify the gusty-wind contribution to dust emissions and peak PM10 concentration. As a result, the LS scheme (Lu and Shao 1999) produced the minimum errors for peak PM10 concentrations, the MB scheme (Marticorena and Bergametti 1995) underestimated the PM10 concentrations by 70–90%, and the KOK scheme (Kok et al. 2014) overestimated PM10 concentrations by 10–50% in most areas. The gusty-wind model could reasonably reproduce the probability density function of 2-min wind speeds. There were 5–40% more dust-emission flux and 5–40% more peak PM10 concentrations generated by the gusty wind than the hourly wind in the dust-source regions. The increase of peak PM10 concentration caused by gusty wind in the non-dust-source regions was higher than in the dust-source regions, with 10–50%. Implementing the gusty-wind model could help improve the LS scheme’s performance in simulating PM10 concentrations of this severe SDS event. More work is still needed to investigate the reliability of the gusty-wind model and LS scheme on various SDS events.


Author(s):  
Shiva Salehi ◽  
Ali Ardalan ◽  
Abbas Ostadtaghizadeh ◽  
Armin Zareiyan ◽  
Gholamreza Garmaroudi ◽  
...  

2021 ◽  
Author(s):  
Essam Mohammed Alghamdi ◽  
Mazen Ebraheem Assiri ◽  
Mohsin Jamil Butt

Abstract Sand and dust storm events are frequent natural hazards in the Kingdom of Saudi Arabia. Sand and dust storm monitoring is therefore essential to mitigate their environmental-related issues. Satellite remote sensing has been successfully used for sand and dust storm monitoring in various parts of the world. In the current endeavor, we are applying the Global Dust Detection Index (GDDI) on Moderate Resolution Imaging Spectroradiometer (MODIS) data onboard Terra satellite to monitor sand and dust storm activities over the Kingdom of Saudi Arabia. In the current study, fourteen sand and dust storm events are analyzed between the years 2000 to 2017. The GDDI based results are validated by using MODIS combined Dark Target (DT) and Deep Blue (DB) Aerosol Optical Depth (AOD) product, Meteosat satellite images, ground-based meteorological stations data, and AOD data from AERONET (Aerosol Robotic Network) stations in the study area. Also, GDDI based results are analyzed by determining algorithm accuracy, Probability Of Correct positive Detection (POCD), and Probability Of False positive Detection (POFD). Results of the study show that GDDI can successfully identify sand and dust storm events with various threshold values over the Kingdom of Saudi Arabia. It is envisaged that the outcome of this study would be very beneficial to understand sand and dust storm characteristics in the study region.


Author(s):  
Eltahir Idris Eltahir Mohamed ◽  
Elfatih A. A. Elsheikh ◽  
A. Awad Babiker ◽  
Islam Md. Rafiqul ◽  
Mohamad Hadi Habaebi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document