scholarly journals Relationship between drizzle rate, liquid water path and droplet concentration at the scale of a stratocumulus cloud system

2008 ◽  
Vol 8 (16) ◽  
pp. 4641-4654 ◽  
Author(s):  
O. Geoffroy ◽  
J.-L. Brenguier ◽  
I. Sandu

Abstract. The recent ACE-2, EPIC and DYCOMS-II field experiments showed that the drizzle precipitation rate of marine stratocumulus scales with the cloud geometrical thickness or liquid water path, and the droplet concentration, when averaged over a domain typical of a GCM grid. This feature is replicated here with large-eddy-simulations using state-of-the-art bulk parameterizations of precipitation formation in stratocumulus clouds. The set of numerical simulations shows scaling relationships similar to the ones derived from the field experiments, especially the one derived from the DYCOMS-II data set. This result suggests that the empirical relationships were not fortuitous and that they reflect the mean effect of cloud physical processes. Such relationships might be more suited to GCM parameterizations of precipitation from shallow clouds than bulk parameterizations of autoconversion, that were initially developed for cloud resolving models.

2008 ◽  
Vol 8 (1) ◽  
pp. 3921-3959 ◽  
Author(s):  
O. Geoffroy ◽  
J.-L. Brenguier ◽  
I. Sandu

Abstract. The recent ACE-2, EPIC and DYCOMS-II field experiments showed that the drizzle precipitation rate of marine stratocumulus scales with the cloud geometrical thickness or liquid water path, and the droplet concentration, when averaged over a domain typical of a GCM grid. This feature is replicated here with large-eddy-simulations using state-of-the-art bulk parameterizations of precipitation formation in stratocumulus clouds. The set of numerical simulations shows scaling relationships similar to the ones derived from the field experiments, especially the one derived from the DYCOMS-II data set. This result suggests that the empirical relationships were not fortuitous and that they reflect the mean effect of cloud physical processes. Such relationships might be more suited to GCM parameterizations of precipitation from shallow clouds than bulk parameterizations of autoconversion, that were initially developed for cloud resolving models.


2011 ◽  
Vol 11 (2) ◽  
pp. 5173-5215
Author(s):  
J.-L. Brenguier ◽  
F. Burnet ◽  
O. Geoffroy

Abstract. Cloud radiative transfer calculations in general circulation models involve a link between cloud microphysical and optical properties. Indeed, the liquid water content expresses as a function of the mean volume droplet radius, while the light extinction is a function of their mean surface radius. There is a small difference between these two parameters because of the droplet spectrum width. This issue has been addressed by introducing an empirical multiplying correction factor to the droplet concentration. Analysis of in situ sampled data, however, revealed that the correction factor decreases when the concentration increases, hence partially mitigating the aerosol indirect effect. Five field experiments are reanalyzed here, in which standard and upgraded versions of the droplet spectrometer were used to document shallow cumulus and stratocumulus topped boundary layers. They suggest that the standard probe noticeably underestimates the correction factor compared to the upgraded versions. The analysis is further refined to demonstrate that the value of the correction factor derived by averaging values calculated locally along the flight path overestimates the value derived from liquid water path and optical thickness of a cloudy column, and that there is no detectable correlation between the correction factor and the droplet concentration. It is also shown that the droplet concentration dilution by entrainment-mixing after CCN activation is significantly stronger in shallow cumuli than in stratocumulus layers. These various effects are finally combined to produce the best estimate of the correction factor to use in general circulation models.


2011 ◽  
Vol 11 (18) ◽  
pp. 9771-9786 ◽  
Author(s):  
J.-L. Brenguier ◽  
F. Burnet ◽  
O. Geoffroy

Abstract. Cloud radiative transfer calculations in general circulation models involve a link between cloud microphysical and optical properties. Indeed, the liquid water content expresses as a function of the mean volume droplet radius, while the light extinction is a function of their mean surface radius. There is a small difference between these two parameters because of the droplet spectrum width. This issue has been addressed by introducing an empirical multiplying correction factor to the droplet concentration. Analysis of in situ sampled data, however, revealed that the correction factor decreases when the concentration increases, hence partially mitigating the aerosol indirect effect. Five field experiments are reanalyzed here, in which standard and upgraded versions of the droplet spectrometer were used to document shallow cumulus and stratocumulus topped boundary layers. They suggest that the standard probe noticeably underestimates the correction factor compared to the upgraded versions. The analysis is further refined to demonstrate that the value of the correction factor derived by averaging values calculated locally along the flight path overestimates the value derived from liquid water path and optical thickness of a cloudy column, and that there is no detectable relationship between the correction factor and the droplet concentration. It is also shown that the droplet concentration dilution by entrainment-mixing after CCN activation is significantly stronger in shallow cumuli than in stratocumulus layers. These various effects are finally combined to produce the today best estimate of the correction factor to use in general circulation models.


2020 ◽  
Vol 13 (3) ◽  
pp. 1485-1499 ◽  
Author(s):  
Maria P. Cadeddu ◽  
Virendra P. Ghate ◽  
Mario Mech

Abstract. The partition of cloud and drizzle water path in precipitating clouds plays a key role in determining the cloud lifetime and its evolution. A technique to quantify cloud and drizzle water path by combining measurements from a three-channel microwave radiometer (23.8, 30, and 90 GHz) with those from a vertically pointing Doppler cloud radar and a ceilometer is presented. The technique is showcased using 1 d of observations to derive precipitable water vapor, liquid water path, cloud water path, drizzle water path below the cloud base, and drizzle water path above the cloud base in precipitating stratocumulus clouds. The resulting cloud and drizzle water path within the cloud are in good qualitative agreement with the information extracted from the radar Doppler spectra. The technique is then applied to 10 d each of precipitating closed and open cellular marine stratocumuli. In the closed-cell systems only ∼20 % of the available drizzle in the cloud falls below the cloud base, compared to ∼40 % in the open-cell systems. In closed-cell systems precipitation is associated with radiative cooling at the cloud top <-100Wm-2 and a liquid water path >200 g m−2. However, drizzle in the cloud begins to exist at weak radiative cooling and liquid water path >∼150 g m−2. Our results collectively demonstrate that neglecting scattering effects for frequencies at and above 90 GHz leads to overestimation of the total liquid water path of about 10 %–15 %, while their inclusion paves the path for retrieving drizzle properties within the cloud.


2018 ◽  
Vol 11 (7) ◽  
pp. 4273-4289 ◽  
Author(s):  
Daniel P. Grosvenor ◽  
Odran Sourdeval ◽  
Robert Wood

Abstract. Droplet concentration (Nd) and liquid water path (LWP) retrievals from passive satellite retrievals of cloud optical depth (τ) and effective radius (re) usually assume the model of an idealized cloud in which the liquid water content (LWC) increases linearly between cloud base and cloud top (i.e. at a fixed fraction of the adiabatic LWC). Generally it is assumed that the retrieved re value is that at the top of the cloud. In reality, barring re retrieval biases due to cloud heterogeneity, the retrieved re is representative of smaller values that occur lower down in the cloud due to the vertical penetration of photons at the shortwave-infrared wavelengths used to retrieve re. This inconsistency will cause an overestimate of Nd and an underestimate of LWP (referred to here as the “penetration depth bias”), which this paper quantifies via a parameterization of the cloud top re as a function of the retrieved re and τ. Here we estimate the relative re underestimate for a range of idealized modelled adiabatic clouds using bispectral retrievals and plane-parallel radiative transfer. We find a tight relationship between gre=recloud top/reretrieved and τ and that a 1-D relationship approximates the modelled data well. Using this relationship we find that gre values and hence Nd and LWP biases are higher for the 2.1 µm channel re retrieval (re2.1) compared to the 3.7 µm one (re3.7). The theoretical bias in the retrieved Nd is very large for optically thin clouds, but rapidly reduces as cloud thickness increases. However, it remains above 20 % for τ<19.8 and τ<7.7 for re2.1 and re3.7, respectively. We also provide a parameterization of penetration depth in terms of the optical depth below cloud top (dτ) for which the retrieved re is likely to be representative. The magnitude of the Nd and LWP biases for climatological data sets is estimated globally using 1 year of daily MODIS (MODerate Imaging Spectroradiometer) data. Screening criteria are applied that are consistent with those required to help ensure accurate Nd and LWP retrievals. The results show that the SE Atlantic, SE Pacific and Californian stratocumulus regions produce fairly large overestimates due to the penetration depth bias with mean biases of 32–35 % for re2.1 and 15–17 % for re3.7. For the other stratocumulus regions examined the errors are smaller (24–28 % for re2.1 and 10–12 % for re3.7). Significant time variability in the percentage errors is also found with regional mean standard deviations of 19–37 % of the regional mean percentage error for re2.1 and 32–56 % for re3.7. This shows that it is important to apply a daily correction to Nd for the penetration depth error rather than a time–mean correction when examining daily data. We also examine the seasonal variation of the bias and find that the biases in the SE Atlantic, SE Pacific and Californian stratocumulus regions exhibit the most seasonality, with the largest errors occurring in the December, January and February (DJF) season. LWP biases are smaller in magnitude than those for Nd (−8 to −11 % for re2.1 and −3.6 to −6.1 % for re3.7). In reality, and especially for more heterogeneous clouds, the vertical penetration error will be combined with a number of other errors that affect both the re and τ, which are potentially larger and may compensate or enhance the bias due to vertical penetration depth. Therefore caution is required when applying the bias corrections; we suggest that they are only used for more homogeneous clouds.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 730
Author(s):  
Georgios Matheou ◽  
Anthony B. Davis ◽  
João Teixeira

Stratocumulus clouds have a distinctive structure composed of a combination of lumpy cellular structures and thin elongated regions, resembling canyons or slits. The elongated slits are referred to as “spiderweb” structure to emphasize their interconnected nature. Using very high resolution large-eddy simulations (LES), it is shown that the spiderweb structure is generated by cloud-top evaporative cooling. Analysis of liquid water path (LWP) and cloud liquid water content shows that cloud-top evaporative cooling generates relatively shallow slits near the cloud top. Most of liquid water mass is concentrated near the cloud top, thus cloud-top slits of clear air have a large impact on the entire-column LWP. When evaporative cooling is suppressed in the LES, LWP exhibits cellular lumpy structure without the elongated low-LWP regions. Even though the spiderweb signature on the LWP distribution is negligible, the cloud-top evaporative cooling process significantly affects integral boundary layer quantities, such as the vertically integrated turbulent kinetic energy, mean liquid water path, and entrainment rate. In a pair of simulations driven only by cloud-top radiative cooling, evaporative cooling nearly doubles the entrainment rate.


2012 ◽  
Vol 5 (4) ◽  
pp. 4571-4597
Author(s):  
M. A. Miller ◽  
S. E. Yuter

Abstract. This empirical study demonstrates the feasibility of using 89 GHz Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E) passive microwave brightness temperature data to detect heavily drizzling cells within marine stratocumulus. A binary heavy drizzle product is described that can be used to determine areal and feature statistics of drizzle cells within the major marine stratocumulus regions. Current satellite liquid water path (LWP) and cloud radar products capable of detecting drizzle are either lacking in resolution (AMSR-E LWP), diurnal coverage (MODIS LWP), or spatial coverage (CloudSat). The AMSR-E 89 GHz data set at 6 × 4 km spatial resolution is sufficient for resolving individual heavily drizzling cells. Radiant emission at 89 GHz by liquid-water cloud and precipitation particles from drizzling cells in marine stratocumulus regions yields local maxima in brightness temperature against an otherwise cloud-free background brightness temperature. The background brightness temperature is primarily constrained by column-integrated water vapor and sea surface temperature. Clouds containing ice are screened out. Once heavily drizzling pixels are identified, connected pixels are grouped into discrete drizzle cell features. The identified drizzle cells are used in turn to determine several spatial statistics for each satellite scene, including drizzle cell number and size distribution. The identification of heavily drizzling cells within marine stratocumulus regions with satellite data facilitates analysis of seasonal and regional drizzle cell occurrence and the interrelation between drizzle and changes in cloud fraction.


Sign in / Sign up

Export Citation Format

Share Document