chemical diffusion
Recently Published Documents


TOTAL DOCUMENTS

597
(FIVE YEARS 46)

H-INDEX

52
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
pp. 1380-1391
Author(s):  
Kerstin Neuhaus ◽  
Christina Schmidt ◽  
Liudmila Fischer ◽  
Wilhelm Albert Meulenberg ◽  
Ke Ran ◽  
...  

In this study, a dual phase composite (CSO-FC2O) consisting of 60 vol % Ce0.8Sm0.2O1.9 as oxygen-conductive phase and 40 vol % FeCo2O4 as electron-conductive phase was synthesized. TEM measurements showed a relatively pure dual-phase material with only minor amounts of a tertiary (Sm,Ce)(Fe,Co)O3 perovskite phase and isolated residues of a rock salt phase at the grain boundaries. The obtained material was used as a model to demonstrate that a combination of polarization relaxation measurements and Kelvin probe force microscopy (KPFM)-based mapping of the Volta potential before and after the end of polarization can be used to determine the chemical diffusion coefficient of the ceria component of the composite. The KPFM measurements were performed at room temperature and show diffusion coefficients in the range of 3 × 10−13 cm2·s−1, which is comparable to values measured for single-phase Gd-doped ceria thin films using the same method.


2021 ◽  
Vol 168 (12) ◽  
pp. 120503 ◽  
Author(s):  
Stephen Dongmin Kang ◽  
Jimmy Jiahong Kuo ◽  
Nidhi Kapate ◽  
Jihyun Hong ◽  
Joonsuk Park ◽  
...  

Following a critical review of the galvanostatic intermittent titration technique in Part I, here we experimentally demonstrate how to extract chemical diffusivity with a modified method. We prepare dense bulk samples that ensure diffusion-limitation. We utilize the scaling with t relax + τ − t relax (t relax: relaxation time; τ: pulse duration), avoiding problems with composition-dependent overpotentials. The equilibrium Nernst voltage is measured separately using small porous particles. This separation between the diffusion measurement and the titration procedure is critical for performing each measurement in a reliable setting. We report the chemical diffusion coefficients of LixNi1/3Mn1/3Co1/3O2 and their activation energy. We extract ionic conductivity and compare it with total conductivity to confirm ion-limitation in chemical diffusion. The measurements suggest that the time scale for diffusion in typical Li-ion battery particles could be much shorter than that of the intercalation/deintercalation processes at the particle surface (Biot number less than 0.1).


Author(s):  
Pengsheng Dong ◽  
Guochen Dong ◽  
M. Santosh ◽  
Xuanxue Mo ◽  
Peng Wang ◽  
...  

Granitoids with diverse composition and tectonic settings provide important tools for exploring crustal evolution and regional geodynamic history. Here we present an integrated study using petrological, mineralogical, zircon U-Pb geochronological, whole-rock geochemical, and isotopic data on the Late Triassic Daocheng batholith in the Yidun Terrane with a view to understanding the petrogenesis of a compositionally diverse batholith and its implications for the evolution of the Paleo-Tethys Ocean in the eastern Tibetan Plateau. The different lithological units of the batholith, including granodiorite, monzogranite, and quartz diorite, with abundant mafic microgranular enclaves in the granodiorite (MME I) and monzogranite (MME II), show identical crystallization ages of 218−215 Ma. The mineral assemblage and chemical composition of the granodiorite are identical to those of tonalitic-granodioritic melts generated under water-unsaturated conditions. The insignificant Eu anomalies and low magmatic temperatures indicate hydrous melting in the source. The relatively narrow range of whole-rock chemical and Sr-Nd isotopes, as well as the zircon trace element and Hf isotopic compositions of the granodiorite, suggest a homogeneous crustal source for the magma. Our modeling suggests that the rock was produced by 20−50% of lower crustal melting. The Daocheng monzogranites display more evolved compositions and larger variations in Sr-Nd-Hf isotopes than the granodiorite, which are attributed to assimilation and the fractional crystallization process. This is evidenced by the presence of metasedimentary enclave and inherited zircon grains with Neoproterozoic and Paleozoic ages, a non-cotectic trend in composition, and the trend shown by the modeling of initial 87Sr/86Sr ratios and Sr. The quartz diorites and MMEs showing composition similar to that of andesitic primary magma have high zircon εHf(t) values and are characterized by enrichment in LILEs and depletion of HFSEs. They were derived from the partial melting of lithospheric mantle that had been metasomatized by slab melts and fluids. The MMEs in both rocks display typical igneous texture and higher rare earth element (REE) and incompatible element concentrations than their host granites. The presence of fine-grained margins, acicular apatite, and plagioclase megacrysts suggests a magma mingling process. The overgrowth of amphibole around the pyroxene, quartz ocelli rimmed by biotite, and oscillatory zones of plagioclase are all indicative of chemical diffusion. Their enriched Sr-Nd isotopes imply isotopic equilibrium with the host granites. Based on a comparison with the coeval subduction-related magmatism, we propose that subduction and subsequent rollback of the Paleo-Tethys (Garzê-Litang Ocean) oceanic slab was the possible mechanism that triggered the diverse Triassic magmatism within the eastern Tibetan Plateau.


Author(s):  
Alan J. Ardell

AbstractPublished data on the coarsening kinetics of γ′ (Ni3Al) precipitates in binary Ni–Al alloys aged at 12 temperatures ranging from 773 K to 1073 K are analyzed to provide a comprehensive evaluation of the temperature dependence of the γ/γ′ interfacial free energy, σ. The data are analyzed using equations of the trans-interface-diffusion-controlled (TIDC) theory of coarsening, with temporal exponent n = 2.4. The results show that σ decreases with increasing temperature, T. A linear empirical equation is fitted to the data on σvsT; it extrapolates to σ = 0 in the liquid region of the Ni–Al phase diagram, as it should do. A quantitative temperature-dependent transition radius, rtrans, is calculated; it depends on the product of the interface width and the ratio of the chemical diffusion coefficients in the γ phase and interface regions. Applying the TIDC coarsening equations to calculate σ is justified when the average radius, 〈r〉, satisfies the condition 〈r〉 < rtrans, which is valid for all the data used in the fit. The data on σvsT are compared with theoretical predictions. The results are discussed in the context of previous work, as well as with values of σ obtained through analyses using the equations of traditional LSW coarsening kinetics, n = 3.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. Tajčmanová ◽  
Y. Podladchikov ◽  
E. Moulas ◽  
L. Khakimova

AbstractQuantifying natural processes that shape our planet is a key to understanding the geological observations. Many phenomena in the Earth are not in thermodynamic equilibrium. Cooling of the Earth, mantle convection, mountain building are examples of dynamic processes that evolve in time and space and are driven by gradients. During those irreversible processes, entropy is produced. In petrology, several thermodynamic approaches have been suggested to quantify systems under chemical and mechanical gradients. Yet, their thermodynamic admissibility has not been investigated in detail. Here, we focus on a fundamental, though not yet unequivocally answered, question: which thermodynamic formulation for petrological systems under gradients is appropriate—mass or molar? We provide a comparison of both thermodynamic formulations for chemical diffusion flux, applying the positive entropy production principle as a necessary admissibility condition. Furthermore, we show that the inappropriate solution has dramatic consequences for understanding the key processes in petrology, such as chemical diffusion in the presence of pressure gradients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sebastian Badur ◽  
Diemo Renz ◽  
Marvin Cronau ◽  
Thomas Göddenhenrich ◽  
Dirk Dietzel ◽  
...  

AbstractElectrochemical strain microscopy (ESM) has been developed with the aim of measuring Vegard strains in mixed ionic-electronic conductors (MIECs), such as electrode materials for Li-ion batteries, caused by local changes in the chemical composition. In this technique, a voltage-biased AFM tip is used in contact resonance mode. However, extracting quantitative strain information from ESM experiments is highly challenging due to the complexity of the signal generation process. In particular, electrostatic interactions between tip and sample contribute significantly to the measured ESM signals, and the separation of Vegard strain-induced signal contributions from electrostatically induced signal contributions is by no means a trivial task. Recently, we have published a compensation method for eliminating frequency-independent electrostatic contributions in ESM measurements. Here, we demonstrate the potential of this method for detecting Vegard strain in MIECs by choosing Cu$$_2$$ 2 Mo$$_6$$ 6 S$$_8$$ 8 as a model-type MIEC with an exceptionally high Cu chemical diffusion coefficient. Even for this material, Vegard strains are only measurable around and above room-temperature and with proper elimination of electrostatics. The analyis of the measured Vegards strains gives strong indication that due to a high charge transfer resistance at the tip/interface, the local Cu concentration variations are much smaller than predicted by the local Nernst equation. This suggests that charge transfer resistances have to be analyzed in more detail in future ESM studies.


2021 ◽  
Vol 8 ◽  
Author(s):  
Gunnel Göransson ◽  
Anna Apler ◽  
Anna-Karin Dahlberg ◽  
Hjördis Löfroth ◽  
Sarah Josefsson ◽  
...  

Unregulated discharges of wastewater from pulp and paper factories resulted in the formation of relatively thick organic (cellulose) rich sediments in shallow waters along the Swedish coast. These deposits are known as fiberbanks and are contaminated by persistent organic pollutants (POPs), metals and methylmercury, which can be dispersed by diffusion and advective processes coupled to propeller wash, high river discharges, strong wind waves and submarine landslides. Based on a case study of polychlorinated biphenyls (PCBs), one group of prevalent POPs in the fiberbanks, we present a probabilistic approach to estimate the potential risk of dispersion of fiberbank contaminants. The approach allows for estimation of the dispersal pathways that dominates the risk within a given time and provides more insight about the significance of various dispersion processes. We show that it is highly likely that chemical diffusion and advection triggered by ship-induced resuspension will disperse PCBs (sum of seven congeners; Σ7PCB) above a threshold level for environmental impact, while the likelihood of river and wind-wave generated resuspension dispersion pathways are lower (∼20%, respectively). We further show that there is approximately 5% likelihood that a submarine landslide will disperse Σ7PCB above the threshold level. The study implies that the governing parameters for risk assessment specifically should include reliable data on contaminant concentration, water depth above the fiberbank, estimation of concerned fiberbank areas, time duration of erosive fluid flows and measured diffusion. The approach provides insight into the importance of various dispersion processes. We suggest that it can be applied to support risk assessment, especially when there are limited available data and/or knowledge about the system under study.


2021 ◽  
Vol 7 (28) ◽  
pp. eabh0040
Author(s):  
Seungkyoung Heo ◽  
Jeongdae Ha ◽  
Sook Jin Son ◽  
In Sun Choi ◽  
Hyeokjun Lee ◽  
...  

Transfer printing is a technique that integrates heterogeneous materials by readily retrieving functional elements from a grown substrate and subsequently printing them onto a specific target site. These strategies are broadly exploited to construct heterogeneously integrated electronic devices. A typical wet transfer printing method exhibits limitations related to unwanted displacement and shape distortion of the device due to uncontrollable fluid movement and slow chemical diffusion. In this study, a dry transfer printing technique that allows reliable and instant release of devices by exploiting the thermal expansion mismatch between adjacent materials is demonstrated, and computational studies are conducted to investigate the fundamental mechanisms of the dry transfer printing process. Extensive exemplary demonstrations of multiscale, sequential wet-dry, circuit-level, and biological topography-based transfer printing demonstrate the potential of this technique for many other emerging applications in modern electronics that have not been achieved through conventional wet transfer printing over the past few decades.


Sign in / Sign up

Export Citation Format

Share Document