scholarly journals On aerosol hygroscopicity, cloud condensation nuclei (CCN) spectra and critical supersaturation measured at two remote islands of Korea between 2006 and 2009

2011 ◽  
Vol 11 (7) ◽  
pp. 19683-19727 ◽  
Author(s):  
J. H. Kim ◽  
S. S. Yum ◽  
S. Shim ◽  
S.-C. Yoon ◽  
J. G. Hudson ◽  
...  

Abstract. Aerosol size distribution, total concentration (i.e., condensation nuclei (CN) concentration, NCN), cloud condensation nuclei (CCN) concentration (NCCN), hygroscopicity at ~90 % relative humidity (RH) were measured at a background monitoring site at Gosan, Jeju Island, south of the Korea Peninsula in August 2006, April to May 2007 and August to October 2008. Similar measurement took place in August 2009 at another background site (Baengnyeongdo Comprehensive Monitoring Observatory, BCMO) on the island of Baengnyeongdo, off the west coast of the Korean Peninsula. Both islands were found to be influenced by continental sources regardless of season and year. Average values for all of the measured NCCN at 0.2, 0.6 and 1.0 % supersaturations (S), NCN, and geometric mean diameter (Dg) from both islands were in the range of 1043–3051 cm−3, 2076–4360 cm−3, 2713–4694 cm−3, 3890–5117 cm−3 and 81–98 nm, respectively. Although the differences in Dg and NCN were small between Gosan and BCMO, NCCN at various S was much higher at the latter, which is closer to China. Most of the aerosols were internally mixed and no notable differences in hygroscopicity were found between the days of strong pollution influence and the non-pollution days for both islands. During the 2008 and 2009 campaigns, critical supersaturation for cloud nucleation (Sc) for selected particle sizes was measured. Particles of 100 nm diameters had mean Sc of 0.19 ± 0.02 % during 2008 and those of 81 and 110 nm diameters had mean Sc of 0.26 ± 0.07 % and 0.17 ± 0.04 %, respectively, during 2009. Hygroscopicity parameters estimated from the measured Sc were mostly higher than the ones from the measured hygroscopic growth at ~90 % RH. For the 2008 campaign, NCCN at 0.2, 0.6 and 1.0 % S were predicted based on the measured dry particle size distribution and various ways of representing aerosol hygroscopicity. The best closure was obtained when temporally varying and size-resolved hygroscopicity information from HTDMA was used, for which the average relative deviations from the measured values were 19 % for 1.0 % S and 28 % for 0.2 % S. Prescribing a constant hygroscopicity parameter suggested in literature (κ = 0.3) for all sizes and time resulted in the average relative deviations, 25–40 %. When constant hygroscopicity was assumed, the relative deviation tended to increase with decreasing NCCN, which was accompanied by increase of sub-100 nm fraction. These results suggest that hygroscopicity information for aerosols of diameters smaller than 100 nm is crucial for more accurate prediction of NCCN.

2011 ◽  
Vol 11 (24) ◽  
pp. 12627-12645 ◽  
Author(s):  
J. H. Kim ◽  
S. S. Yum ◽  
S. Shim ◽  
S.-C. Yoon ◽  
J. G. Hudson ◽  
...  

Abstract. Aerosol size distribution, total concentration (i.e. condensation nuclei (CN) concentration, NCN), cloud condensation nuclei (CCN) concentration (NCCN), hygroscopicity at ~90% relative humidity (RH) were measured at a background monitoring site at Gosan, Jeju Island, south of the Korean Peninsula in August 2006, April to May 2007 and August to October 2008. Similar measurements took place in August 2009 at another background site (Baengnyeongdo Comprehensive Monitoring Observatory, BCMO) on the island of Baengnyeongdo, off the west coast of the Korean Peninsula. Both islands were found to be influenced by continental sources regardless of season and year. Average values for all of the measured NCCN at 0.2, 0.6 and 1.0% supersaturations (S), NCN, and geometric mean diameter (Dg) from both islands were in the range of 1043–3051 cm−3, 2076–4360 cm−3, 2713–4694 cm−3, 3890–5117 cm−3 and 81–98 nm, respectively. Although the differences in Dg and NCN were small between Gosan and BCMO, NCCN at various S was much higher at the latter, which is closer to China. Most of the aerosols were internally mixed and no notable differences in hygroscopicity were found between the days of strong pollution influence and the non-pollution days for both islands. During the 2008 and 2009 campaigns, critical supersaturation for CCN nucleation (Sc) for selected particle sizes was measured. Particles of 100 nm diameters had mean Sc of 0.19 ± 0.02% during 2008 and those of 81 and 110 nm diameters had mean Sc of 0.26 ± 0.07% and 0.17 ± 0.04%, respectively, during 2009. The values of the hygroscopicity parameter (κ), estimated from measured Sc, were mostly higher than the κ values obtained from the measured hygroscopic growth at ~90% RH. For the 2008 campaign, NCCN at 0.2, 0.6 and 1.0% S were predicted based on measured dry particle size distributions and various ways of representing particle hygroscopicity. The best closure was obtained when temporally varying and size-resolved hygroscopicity information from the HTDMA was used, for which the average relative deviations from the measured values were 28 ± 20% for 0.2% S (mostly under-prediction), 25 ± 52% for 0.6% (balanced between over- and under-prediction) and 19 ± 15% for 1.0% S (balanced). Prescribing a constant hygroscopicity parameter suggested in the literature (κ = 0.3) for all sizes and times resulted in average relative deviations of 28–41% where over-prediction was dominant. When constant hygroscopicity was assumed, the relative deviation tended to increase with decreasing NCCN, which was accompanied by an increase of the sub-100 nm fraction. These results suggest that hygroscopicity information for particles of diameters smaller than 100 nm is crucial for more accurate predictions of NCCN. For confirmation when κ = 0.17, the average κ for sub-100 nm particles in this study, was applied for sub-100 nm and κ = 0.3 for all other sizes, the CCN closure became significantly better than that with κ = 0.3 for all sizes.


2009 ◽  
Vol 9 (18) ◽  
pp. 7053-7066 ◽  
Author(s):  
A. Bougiatioti ◽  
C. Fountoukis ◽  
N. Kalivitis ◽  
S. N. Pandis ◽  
A. Nenes ◽  
...  

Abstract. Measurements of cloud condensation nuclei (CCN) concentrations (cm−3) between 0.2 and 1.0% supersaturation, aerosol size distribution and chemical composition were performed at a remote marine site in the eastern Mediterranean, from September to October 2007 during the FAME07 campaign. Most of the particles activate at ~0.6% supersaturation, characteristic of the aged nature of the aerosol sampled. Application of Köhler theory, using measurements of bulk composition, size distribution, and assuming that organics are insoluble resulted in agreement between predicted and measured CCN concentrations within 7±11% for all supersaturations, with a tendency for CCN underprediction (16±6%; r2=0.88) at the lowest supersaturations (0.21%). Including the effects of the water-soluble organic fraction (which represent around 70% of the total organic content) reduces the average underprediction bias at the low supersaturations, resulting in a total closure error of 0.6±6%. Using threshold droplet growth analysis, the growth kinetics of ambient CCN is consistent with NaCl calibration experiments; hence the presence of aged organics does not suppress the rate of water uptake in this environment. The knowledge of the soluble salt fraction is sufficient for the description of the CCN activity in this area.


2004 ◽  
Vol 4 (8) ◽  
pp. 2119-2143 ◽  
Author(s):  
J. Rissler ◽  
E. Swietlicki ◽  
J. Zhou ◽  
G. Roberts ◽  
M. O. Andreae ◽  
...  

Abstract. Sub-micrometer atmospheric aerosol particles were studied in the Amazon region, 125 km northeast of Manaus, Brazil (-1°55.2'S, 59°28.1'W). The measurements were performed during the wet-to-dry transition period, 4-28 July 2001 as part of the LBA (Large-Scale Biosphere Atmosphere Experiment in Amazonia) CLAIRE-2001 (Cooperative LBA Airborne Regional Experiment) experiment. The number size distribution was measured with two parallel differential mobility analyzers, the hygroscopic growth at 90% RH with a Hygroscopic Tandem Mobility Analyzer (H-TDMA) and the concentrations of cloud condensation nuclei (CCN) with a cloud condensation nuclei counter. A model was developed that uses the H-TDMA data to predict the number of soluble molecules or ions in the individual particles and the corresponding minimum particle diameter for activation into a cloud droplet at a certain supersaturation. Integrating the number size distribution above this diameter, CCN concentrations were predicted with a time resolution of 10 min and compared to the measured concentrations. During the study period, three different air masses were identified and compared: clean background, air influenced by aged biomass burning, and moderately polluted air from recent local biomass burning. For the clean period 2001, similar number size distributions and hygroscopic behavior were observed as during the wet season at the same site in 1998, with mostly internally mixed particles of low diameter growth factor (~1.3 taken from dry to 90% RH). During the periods influenced by biomass burning the hygroscopic growth changed slightly, but the largest difference was seen in the number size distribution. The CCN model was found to be successful in predicting the measured CCN concentrations, typically within 25%. A sensitivity study showed relatively small dependence on the assumption of which model salt that was used to predict CCN concentrations from H-TDMA data. One strength of using H-TDMA data to predict CCN concentrations is that the model can also take into account soluble organic compounds, insofar as they go into solution at 90% RH. Another advantage is the higher time resolution compared to using size-resolved chemical composition data.


2012 ◽  
Vol 12 (8) ◽  
pp. 3783-3790 ◽  
Author(s):  
Q. Zhang ◽  
J. Meng ◽  
J. Quan ◽  
Y. Gao ◽  
D. Zhao ◽  
...  

Abstract. The impact of aerosol composition on cloud condensation nuclei (CCN) activity were analyzed in this study based on field experiments carried out at downtown Tianjin, China in September 2010. In the experiments, the CCN measurements were performed at supersaturation (SS) of 0.1%, 0.2% and 0.4% using a thermal-gradient diffusion chamber (DMT CCNC), whereas the aerosol size distribution and composition were simultaneously measured with a TSI SMPS and an Aerodyne Aerosol Mass Spectrometer (AMS), respectively. The results show that the influence of aerosol composition on CCN activity is notable under low SS (0.1%), and their influence decreased with increasing SS. For example, under SS of 0.1%, the CCN activity increases from 4.5±2.6% to 12.8±6.1% when organics fraction decrease from 30–40% to 10–20%. The rate of increase reached up to 184%. While under SS of 0.4%, the CCN activity increases only from 35.7±19.0% to 46.5±12.3% correspondingly. The calculated NCCN based on the size-resolved activation ratio and aerosol number size distribution correlated well with observed NCCN at high SS (0.4%), but this consistence decreased with the falling of SS. The slopes of linear fitted lines between calculated and observed NCCN are 0.708, 0.947, and 0.995 at SS of 0.1%, 0.2% and 0.4% respectively. Moreover, the stand deviation (SD) of calculated NCCN increased with the decreasing of SS. A case study of CCN closure analyses indicated that the calculated error of NCCN could reach up to 34% at SS of 0.1% if aerosol composition were not included, and the calculated error decreased with the raising of SS. It is decreased to 9% at SS of 0.2%, and further decreased to 4% at SS of 0.4%.


2016 ◽  
Vol 16 (24) ◽  
pp. 15709-15740 ◽  
Author(s):  
Mira L. Pöhlker ◽  
Christopher Pöhlker ◽  
Florian Ditas ◽  
Thomas Klimach ◽  
Isabella Hrabe de Angelis ◽  
...  

Abstract. Size-resolved long-term measurements of atmospheric aerosol and cloud condensation nuclei (CCN) concentrations and hygroscopicity were conducted at the remote Amazon Tall Tower Observatory (ATTO) in the central Amazon Basin over a 1-year period and full seasonal cycle (March 2014–February 2015). The measurements provide a climatology of CCN properties characteristic of a remote central Amazonian rain forest site.The CCN measurements were continuously cycled through 10 levels of supersaturation (S  =  0.11 to 1.10 %) and span the aerosol particle size range from 20 to 245 nm. The mean critical diameters of CCN activation range from 43 nm at S  =  1.10 % to 172 nm at S  =  0.11 %. The particle hygroscopicity exhibits a pronounced size dependence with lower values for the Aitken mode (κAit  =  0.14 ± 0.03), higher values for the accumulation mode (κAcc  =  0.22 ± 0.05), and an overall mean value of κmean  =  0.17 ± 0.06, consistent with high fractions of organic aerosol.The hygroscopicity parameter, κ, exhibits remarkably little temporal variability: no pronounced diurnal cycles, only weak seasonal trends, and few short-term variations during long-range transport events. In contrast, the CCN number concentrations exhibit a pronounced seasonal cycle, tracking the pollution-related seasonality in total aerosol concentration. We find that the variability in the CCN concentrations in the central Amazon is mostly driven by aerosol particle number concentration and size distribution, while variations in aerosol hygroscopicity and chemical composition matter only during a few episodes.For modeling purposes, we compare different approaches of predicting CCN number concentration and present a novel parametrization, which allows accurate CCN predictions based on a small set of input data.


2015 ◽  
Vol 15 (21) ◽  
pp. 12211-12229 ◽  
Author(s):  
M. Paramonov ◽  
V.-M. Kerminen ◽  
M. Gysel ◽  
P. P. Aalto ◽  
M. O. Andreae ◽  
...  

Abstract. Cloud condensation nuclei counter (CCNC) measurements performed at 14 locations around the world within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) framework have been analysed and discussed with respect to the cloud condensation nuclei (CCN) activation and hygroscopic properties of the atmospheric aerosol. The annual mean ratio of activated cloud condensation nuclei (NCCN) to the total number concentration of particles (NCN), known as the activated fraction A, shows a similar functional dependence on supersaturation S at many locations – exceptions to this being certain marine locations, a free troposphere site and background sites in south-west Germany and northern Finland. The use of total number concentration of particles above 50 and 100 nm diameter when calculating the activated fractions (A50 and A100, respectively) renders a much more stable dependence of A on S; A50 and A100 also reveal the effect of the size distribution on CCN activation. With respect to chemical composition, it was found that the hygroscopicity of aerosol particles as a function of size differs among locations. The hygroscopicity parameter κ decreased with an increasing size at a continental site in south-west Germany and fluctuated without any particular size dependence across the observed size range in the remote tropical North Atlantic and rural central Hungary. At all other locations κ increased with size. In fact, in Hyytiälä, Vavihill, Jungfraujoch and Pallas the difference in hygroscopicity between Aitken and accumulation mode aerosol was statistically significant at the 5 % significance level. In a boreal environment the assumption of a size-independent κ can lead to a potentially substantial overestimation of NCCN at S levels above 0.6 %. The same is true for other locations where κ was found to increase with size. While detailed information about aerosol hygroscopicity can significantly improve the prediction of NCCN, total aerosol number concentration and aerosol size distribution remain more important parameters. The seasonal and diurnal patterns of CCN activation and hygroscopic properties vary among three long-term locations, highlighting the spatial and temporal variability of potential aerosol–cloud interactions in various environments.


2012 ◽  
Vol 12 (1) ◽  
pp. 1493-1516
Author(s):  
Q. Zhang ◽  
J. Meng ◽  
J. Quan ◽  
Y. Gao ◽  
D. Zhao ◽  
...  

Abstract. The impact of aerosol composition on cloud condensation nuclei (CCN) activity was analyzed in this study based on field experiments carried out at downtown Tianjin, China, in September 2010. In the experiments, the CCN measurements were performed at supersaturation (SS) of 0.1%, 0.2% and 0.4% using a thermal-gradient diffusion chamber (DMT CCNC), whereas the aerosol size distribution and composition were simultaneously measured with a TSI SMPS and an Aerodyne Aerosol Mass Spectrometer (AMS), respectively. The results show that the influence of aerosol composition on CCN activity is notable under low SS (0.1%), and their influence decreased with increasing SS. For example, under SS of 0.1%, the CCN activity increases from 4.5 ± 2.6% to 12.8 ± 6.1% when organics fraction decrease from 30–40% to 10–20%. The rate of increase reaches up to 184%. While under SS of 0.4%, the CCN activity increases only from 35.7 ± 19.0% to 46.5 ± 12.3%, correspondingly. The calculated NCCN based on the size-resolved activation ratio and aerosol number size distribution correlates well with observed NCCN at high SS (0.4%), but this correlation decreases with the falling of SS. The slopes of linear fitted lines between calculated and observed NCCN are 0.708, 0.947, and 0.995 at SS of 0.1%, 0.2% and 0.4%, respectively. Moreover, the standard deviation (SD) of calculated NCCN increases with the decreasing of SS. A case study of CCN closure analyses indicates that the calculated error of NCCN can reach up to 34% at SS of 0.1% if aerosol composition is not included, and the calculated error decreases with the raising of SS. It decreases to 9% at SS of 0.2%, and further decreases to 4% at SS of 0.4%.


2010 ◽  
Vol 10 (2) ◽  
pp. 4189-4223 ◽  
Author(s):  
D. S. Ward ◽  
T. Eidhammer ◽  
W. R. Cotton ◽  
S. M. Kreidenweis

Abstract. Variations in the chemical composition of atmospheric aerosols alter their hygroscopicity and can lead to changes in the cloud-active fraction of the aerosols, or cloud condensation nuclei (CCN) number concentration. To investigate the importance of this effect under different atmospheric conditions, cloud droplet formation was simulated with a Lagrangian parcel model. Initial values of updraft speed and temperature were systematically varied along with aerosol number concentration, size and hygroscopicity (represented by the hygroscopicity parameter, κ). A previous study classifies the sensitivity of CCN activity to compositional changes based on the supersaturation reached in the parcel model. We found that these classifications could not be generalized to a range of aerosol size distribution median radii. Instead, variations in sensitivity with size depend on the location of the dry critical radius for droplet activation relative to the size distribution median radius. The parcel model output was used to construct droplet activation lookup tables based on κ that were implemented in the Regional Atmospheric Modeling System (RAMS) microphysical scheme. As a first application of this system, aerosol hygroscopicity and size were varied in a series of RAMS mesoscale simulations designed to investigate the sensitivity of a mixed-phase orographic cloud case to the parameter variations. Observations from a recent field campaign in northwestern Colorado provided the basis for the aerosol field initializations. Model results show moderate sensitivity in the distribution of total case precipitation to extreme changes in κ, and minimal sensitivity to observed changes in estimated κ. The impact of varying aerosol hygroscopicity diminished with increasing median radius, as expected from the parcel model results. The conclusions drawn from these simulations could simplify similar research in other cloud regimes by defining the need, or lack of need, for detailed knowledge of aerosol composition.


Sign in / Sign up

Export Citation Format

Share Document