scholarly journals Intense atmospheric pollution modifies weather: a~case of mixed biomass burning with fossil fuel combustion pollution in the eastern China

2013 ◽  
Vol 13 (6) ◽  
pp. 14377-14403 ◽  
Author(s):  
A. J. Ding ◽  
C. B. Fu ◽  
X. Q. Yang ◽  
J. N. Sun ◽  
T. Petäjä ◽  
...  

Abstract. The influence of air pollutants, particularly aerosols, on regional and global climate is widely investigated, but only a very limited number of studies reports their impacts on everyday weather. In this work, we present for the first time direct (observational) evidence of a clear effect how a mixed atmospheric pollution changes the weather with a substantial modification in air temperature and rainfall. By using comprehensive measurements in Nanjing, China, we found that mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease of solar radiation by more than 70%, of sensible heat flux over 85%, a temperature drop by almost 10 K, and a change of rainfall during daytime and nighttime. Our results show clear air pollution – weather interactions, and quantify how air pollution affects weather with the influence of air pollution-boundary layer dynamics and aerosol-radiation-cloudy feedbacks. This study highlights a cross-disciplinary needs to study the environmental, weather and climate impact of the mixed biomass burning and fossil fuel combustion sources in the East China.

2013 ◽  
Vol 13 (20) ◽  
pp. 10545-10554 ◽  
Author(s):  
A. J. Ding ◽  
C. B. Fu ◽  
X. Q. Yang ◽  
J. N. Sun ◽  
T. Petäjä ◽  
...  

Abstract. The influence of air pollutants, especially aerosols, on regional and global climate has been widely investigated, but only a very limited number of studies report their impacts on everyday weather. In this work, we present for the first time direct (observational) evidence of a clear effect of how a mixed atmospheric pollution changes the weather with a substantial modification in the air temperature and rainfall. By using comprehensive measurements in Nanjing, China, we found that mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease in the solar radiation intensity by more than 70%, a decrease in the sensible heat by more than 85%, a temperature drop by almost 10 K, and a change in rainfall during both daytime and nighttime. Our results show clear air pollution–weather interactions, and quantify how air pollution affects weather via air pollution–boundary layer dynamics and aerosol–radiation–cloud feedbacks. This study highlights cross-disciplinary needs to investigate the environmental, weather and climate impacts of the mixed biomass burning and fossil fuel combustion sources in East China.


2020 ◽  
Author(s):  
Haiyan Ni ◽  
Ru-Jin Huang ◽  
Ulrike Dusek

<p>To investigate the sources and formation mechanisms of carbonaceous aerosols, a major contributor to severe particulate air pollution, radiocarbon (<span><sup>14</sup>C</span>) measurements were conducted on aerosols sampled from November 2015 to November 2016 in Xi'an, China. Based on the <span><sup>14</sup>C</span> content in elemental carbon (EC), organic carbon (OC) and water-insoluble OC (WIOC), contributions of major sources to carbonaceous aerosols are estimated over a whole seasonal cycle: primary and secondary fossil sources, primary biomass burning, and other non-fossil carbon formed mainly from secondary processes. Primary fossil sources of EC were further sub-divided into coal and liquid fossil fuel combustion by complementing <span><sup>14</sup>C</span> data with stable carbon isotopic signatures.</p><p>The dominant EC source was liquid fossil fuel combustion (i.e., vehicle emissions), accounting for 64 % (median; 45 %–74 %, interquartile range) of EC in autumn, 60 % (41 %–72 %) in summer, 53 % (33 %–69 %) in spring and 46 % (29 %–59 %) in winter. An increased contribution from biomass burning to EC was observed in winter (<span>∼28</span> %) compared to other seasons (warm period; <span>∼15</span> %). In winter, coal combustion (<span>∼25</span> %) and biomass burning equally contributed to EC, whereas in the warm period, coal combustion accounted for a larger fraction of EC than biomass burning. The relative contribution of fossil sources to OC was consistently lower than that to EC, with an annual average of <span>47±4</span> %. Non-fossil OC of secondary origin was an important contributor to total OC (<span>35±4</span> %) and accounted for more than half of non-fossil OC (<span>67±6</span> %) throughout the year. Secondary fossil OC (SOC<span><sub>fossil</sub></span>) concentrations were higher than primary fossil OC (POC<span><sub>fossil</sub></span>) concentrations in winter but lower than POC<span><sub>fossil</sub></span> in the warm period.</p><p>Fossil WIOC and water-soluble OC (WSOC) have been widely used as proxies for POC<span><sub>fossil</sub></span> and SOC<span><sub>fossil</sub></span>, respectively. This assumption was evaluated by (1) comparing their mass concentrations with POC<span><sub>fossil</sub></span> and SOC<span><sub>fossil</sub></span> and (2) comparing ratios of fossil WIOC to fossil EC to typical primary OC-to-EC ratios from fossil sources including both coal combustion and vehicle emissions. The results suggest that fossil WIOC and fossil WSOC are probably a better approximation for primary and secondary fossil OC, respectively, than POC<span><sub>fossil</sub></span> and SOC<span><sub>fossil</sub></span> estimated using the EC tracer method.</p>


2012 ◽  
Vol 12 (2) ◽  
pp. 815-828 ◽  
Author(s):  
T. Ridder ◽  
C. Gerbig ◽  
J. Notholt ◽  
M. Rex ◽  
O. Schrems ◽  
...  

Abstract. Carbon monoxide (CO) and ozone (O3) have been measured in the Western Pacific (43° N to 35° S) during a ship campaign with Research Vessel Sonne in fall 2009. Observations have been performed using ship-based solar absorption Fourier Transform infrared spectrometry, flask sampling, balloon sounding, and in-situ Fourier Transform infrared analysis. The results obtained are compared to the GEOS-Chem global 3-D chemistry transport model for atmospheric composition. In general, a very good agreement is found between the GEOS-Chem model and all instruments. The CO and O3 distributions show a comparable variability suggesting an impact from the same source regions. Tagged-CO simulations implemented in the GEOS-Chem model make it possible to differentiate between different source processes and source regions. The source regions are verified with HYSPLIT backward trajectory calculations. In the Northern Hemisphere fossil fuel combustion in Asia is the dominant source. European and North American fossil fuel combustion also contribute to Northern Hemispheric CO pollution. In the Southern Hemisphere contributions from biomass burning and fossil fuel combustion are dominant; African biomass burning has a significant impact on Western Pacific CO pollution. Furthermore, in the tropical Western Pacific enhanced upper tropospheric CO within the tropical tropopause layer mainly originates from Indonesian fossil fuel combustion and can be transported into the stratosphere. The source regions of the measured O3 pollution are simulated with a tagged-O3 simulation implemented in the GEOS-Chem model. Similar source regions compared to the tagged-CO simulations are identified by the model. In the Northern Hemisphere contributions from Asia, Europe, and North America are significant. In the Southern Hemisphere emissions from South America, south-east Africa, and Oceania significantly contribute to the measured O3 pollution.


2019 ◽  
Author(s):  
Imre Salma ◽  
Anikó Vasanits-Zsigrai ◽  
Attila Machon ◽  
Tamás Varga ◽  
István Major ◽  
...  

Abstract. Fine-fraction aerosol samples were collected, air pollutants and meteorological properties were measured in-situ in regional background environment of the Carpathian Basin, a suburban area and central part of its largest city, Budapest in each season for 1 year-long time interval. The samples were analysed for PM2.5 mass, organic carbon (OC), elemental carbon (EC), water-soluble OC (WSOC), radiocarbon, levoglucosan (LVG) and its stereoisomers, and some chemical elements. Carbonaceous aerosol species made up 36 % of the PM2.5 mass with a modest seasonal variation and with a slightly increasing tendency from the regional background to the city centre (from 32 to 39 %). Coupled radiocarbon-LVG marker method was applied to apportion the total carbon (TC = OC + EC) into contributions of EC and OC from fossil fuel (FF) combustion (ECFF and OCFF, respectively), EC and OC from biomass burning (BB) (ECBB and OCBB, respectively) and OC from biogenic sources (OCBIO). Fossil fuel combustion showed rather constant daily or seasonal mean contributions (of 35 %) to the TC in the whole year in all atmospheric environments, while the daily contributions of BB and biogenic sources changed radically (from


2019 ◽  
Vol 19 (24) ◽  
pp. 15609-15628 ◽  
Author(s):  
Haiyan Ni ◽  
Ru-Jin Huang ◽  
Junji Cao ◽  
Jie Guo ◽  
Haoyue Deng ◽  
...  

Abstract. To investigate the sources and formation mechanisms of carbonaceous aerosols, a major contributor to severe particulate air pollution, radiocarbon (14C) measurements were conducted on aerosols sampled from November 2015 to November 2016 in Xi'an, China. Based on the 14C content in elemental carbon (EC), organic carbon (OC) and water-insoluble OC (WIOC), contributions of major sources to carbonaceous aerosols are estimated over a whole seasonal cycle: primary and secondary fossil sources, primary biomass burning, and other non-fossil carbon formed mainly from secondary processes. Primary fossil sources of EC were further sub-divided into coal and liquid fossil fuel combustion by complementing 14C data with stable carbon isotopic signatures. The dominant EC source was liquid fossil fuel combustion (i.e., vehicle emissions), accounting for 64 % (median; 45 %–74 %, interquartile range) of EC in autumn, 60 % (41 %–72 %) in summer, 53 % (33 %–69 %) in spring and 46 % (29 %–59 %) in winter. An increased contribution from biomass burning to EC was observed in winter (∼28 %) compared to other seasons (warm period; ∼15 %). In winter, coal combustion (∼25 %) and biomass burning equally contributed to EC, whereas in the warm period, coal combustion accounted for a larger fraction of EC than biomass burning. The relative contribution of fossil sources to OC was consistently lower than that to EC, with an annual average of 47±4 %. Non-fossil OC of secondary origin was an important contributor to total OC (35±4 %) and accounted for more than half of non-fossil OC (67±6 %) throughout the year. Secondary fossil OC (SOCfossil) concentrations were higher than primary fossil OC (POCfossil) concentrations in winter but lower than POCfossil in the warm period. Fossil WIOC and water-soluble OC (WSOC) have been widely used as proxies for POCfossil and SOCfossil, respectively. This assumption was evaluated by (1) comparing their mass concentrations with POCfossil and SOCfossil and (2) comparing ratios of fossil WIOC to fossil EC to typical primary OC-to-EC ratios from fossil sources including both coal combustion and vehicle emissions. The results suggest that fossil WIOC and fossil WSOC are probably a better approximation for primary and secondary fossil OC, respectively, than POCfossil and SOCfossil estimated using the EC tracer method.


2019 ◽  
Vol 11 (7) ◽  
pp. 850 ◽  
Author(s):  
Janne Hakkarainen ◽  
Iolanda Ialongo ◽  
Shamil Maksyutov ◽  
David Crisp

NASA’s carbon dioxide mission, Orbiting Carbon Observatory-2, began operating in September 2014. In this paper, we analyze four years (2015–2018) of global (60°S–60°N) XCO2 anomalies and their annual variations and seasonal patterns. We show that the anomaly patterns in the column-averaged CO2 dry air mole fraction, XCO2, are robust and consistent from year-to-year. We evaluate the method by comparing the anomalies to fluxes from anthropogenic, biospheric, and biomass burning and to model-simulated local concentration enhancements. We find that, despite the simplicity of the method, the anomalies describe the spatio-temporal variability of XCO2 (including anthropogenic emissions and seasonal variability related to vegetation and biomass burning) consistently with more complex model-based approaches. We see, for example, that positive anomalies correspond to fossil fuel combustion over the major industrial areas (e.g., China, eastern USA, central Europe, India, and the Highveld region in South Africa), shown as large positive XCO2 enhancements in the model simulations. We also find corresponding positive anomalies and fluxes over biomass burning areas during different fire seasons. On the other hand, the largest negative anomalies correspond to the growing season in the northern middle latitudes, characterized by negative XCO2 enhancements from simulations and high solar-induced chlorophyll fluorescence (SIF) values (indicating the occurrence of photosynthesis). The largest discrepancies between the anomaly patterns and the model-based results are observed in the tropical regions, where OCO-2 shows persistent positive anomalies over every season of every year included in this study. Finally, we demonstrate how XCO2 anomalies enable the detection of anthropogenic signatures for several local scale case studies, both in the Northern and Southern Hemisphere. In particular, we analyze the XCO2 anomalies collocated with the recent TROPOspheric Monitoring Instrument NO2 observations (used as indicator of anthropogenic fossil fuel combustion) over the Highveld region in South Africa. The results highlight the capability of satellite-based observations to monitor natural and man-made CO2 signatures on global scale.


2016 ◽  
Vol 371 (1696) ◽  
pp. 20150173 ◽  
Author(s):  
Fay H. Johnston ◽  
Shannon Melody ◽  
David M. J. S. Bowman

Air pollution from landscape fires, domestic fires and fossil fuel combustion is recognized as the single most important global environmental risk factor for human mortality and is associated with a global burden of disease almost as large as that of tobacco smoking. The shift from a reliance on biomass to fossil fuels for powering economies, broadly described as the pyric transition, frames key patterns in human fire usage and landscape fire activity. These have produced distinct patters of human exposure to air pollution associated with the Agricultural and Industrial Revolutions and post-industrial the Earth global system-wide changes increasingly known as the Anthropocene. Changes in patterns of human fertility, mortality and morbidity associated with economic development have been previously described in terms of demographic, epidemiological and nutrition transitions, yet these frameworks have not explicitly considered the direct consequences of combustion emissions for human health. To address this gap, we propose a pyrohealth transition and use data from the Global Burden of Disease (GBD) collaboration to compare direct mortality impacts of emissions from landscape fires, domestic fires, fossil fuel combustion and the global epidemic of tobacco smoking. Improving human health and reducing the environmental impacts on the Earth system will require a considerable reduction in biomass and fossil fuel combustion. This article is part of the themed issue ‘The interaction of fire and mankind’.


Sign in / Sign up

Export Citation Format

Share Document