scholarly journals Characteristics of regional new particle formation in urban and regional background environments in the North China Plain

2013 ◽  
Vol 13 (8) ◽  
pp. 20531-20560 ◽  
Author(s):  
Z. B. Wang ◽  
M. Hu ◽  
J. Y. Sun ◽  
Z. J. Wu ◽  
D. L. Yue ◽  
...  

Abstract. Long-term measurements of particle number size distributions were carried out in the North China Plain both at an urban background site (Peking University, PKU) and a regional Global Atmospheric Watch station (Shangdianzi, SDZ) from March to November in 2008. In total, 52 new particle formation events were observed simultaneously at both sites, indicating that this is a regional phenomenon in the North China Plain. On average, the mean condensation sink value before the nucleation event start was 0.025 s−1 in the urban environment, which was 1.6 times higher than that at regional site. However, higher particle formation and growth rates were observed at PKU (10.8 cm−3 s−1 an 5.2 nm h−1) compared with those at SDZ (4.9 cm−3 s−1 and 4.0 nm h−1). These results implied that more precursors are needed to participate in the nucleation process to observe the occurrence of new particle formation event in a more polluted urban environment. Different from the observations in clean environments, the background condition of the observed nucleation events in the North China Plain could be characterized as the co-existing of the higher source and sink. The condensational growth of newly formed particles results in an increase in the particle mass concentration, particle light scattering coefficient, and CCN number concentration, with consequences on climate effects and air quality. In 34 investigated new particle formation cases at both sites, a significant particle nucleation and subsequent growth over a sufficient long time period were observed and investigated in terms of the particle light scattering and the number concentration of "potential" CCN. The results revealed that the new particle formation increases the particle light scattering coefficient and CCN number concentration in the North China Plain by factors in the range of 6.3–7.6 and 5.6–8.7, respectively. Moreover, the potential contribution of anthropogenic emissions to the CCN number concentration is more than 50%, which should be drawn more attentions in the regional and global climate model, especially in the polluted urban areas.

2013 ◽  
Vol 13 (24) ◽  
pp. 12495-12506 ◽  
Author(s):  
Z. B. Wang ◽  
M. Hu ◽  
J. Y. Sun ◽  
Z. J. Wu ◽  
D. L. Yue ◽  
...  

Abstract. Long-term measurements of particle number size distributions were carried out both at an urban background site (Peking University, PKU) and a regional Global Atmospheric Watch station (Shangdianzi, SDZ) from March to November in 2008. In total, 52 new particle formation (NPF) events were observed simultaneously at both sites, indicating that this is a regional phenomenon in the North China Plain. On average, the mean condensation sink value before the nucleation events started was 0.025 s−1 in the urban environment, which was 1.6 times higher than that at regional site. However, higher particle formation and growth rates were observed at PKU (10.8 cm−3 s−1 and 5.2 nm h−1) compared with those at SDZ (4.9 cm−3 s−1 and 4.0 nm h−1). These results implied that precursors were much more abundant in the polluted urban environment. Different from the observations in cleaner environments, the background conditions of the observed particle homogeneous nucleation events in the North China Plain could be characterized as the co-existing of a stronger source of precursor gases and a higher condensational sink of pre-existing aerosol particles. Secondary aerosol formation following nucleation events results in an increase of particle mass concentration, particle light scattering coefficient, and cloud condensation nuclei (CCN) number concentration, with consequences on visibility, radiative effects, and air quality. Typical regional NPF events with significant particle nucleation rates and subsequent particle growth over a sufficiently long time period at both sites were chosen to investigate the influence of NPF on the number concentration of "potential" CCN. As a result, the NPF and the subsequent condensable growth increased the CCN number concentration in the North China Plain by factors in the range from 5.6 to 8.7. Moreover, the potential contribution of anthropogenic emissions to the CCN number concentration was more than 50%, to which more attention should be drawn in regional and global climate modeling, especially in the polluted urban areas.


2016 ◽  
Author(s):  
N. Ma ◽  
C. S. Zhao ◽  
J. C. Tao ◽  
Z. J. Wu ◽  
S. Kecorius ◽  
...  

Abstract. The aim of this investigation was to obtain a better understanding of the variability of the cloud condensation nuclei (CCN) activity during new particle formation (NPF) events in an anthropogenically polluted atmosphere of the North China Plain (NCP). We investigated the size-resolved activation ratio as well as particle number size distribution, hygroscopicity and chemical composition during an intensive field experiment at a regional atmospheric observatory at Xianghe. Interestingly, two types of NPF events were found, in which the growth of the newly formed particles is dominated by either sulfate or organic matters. The particle CCN activity therefore significantly differs in those NPF events, indicating that it might be difficult to find a simple parameterization of particle CCN activity during NPF events over the NCP. For an accurate estimation of the potential CCN number concentration (NCCN) during NPF events, the variation of CCN activity has to be taken into account. Considering that a fixed activation ratio curve or critical diameter are usually used to calculate NCCN, the influence of the variation of particle CCN activity on the calculation of NCCN during NPF events was evaluated based on these two parameterizations. It was found that NCCN might be underestimated by up to 30 % if a fix activation ratio curve (representative of the region and season) is used in the calculation; and might be underestimated by up to 50 % if a fix critical diameter (representative of the region and season) is used. Therefore, we suggest not using a fixed critical diameter in the prediction of NCCN in NPF seasons. If real-time CCN activity data is not available, using a proper fixed activation ratio curve can be a compromising choice.


2016 ◽  
Vol 16 (13) ◽  
pp. 8593-8607 ◽  
Author(s):  
Nan Ma ◽  
Chunsheng Zhao ◽  
Jiangchuan Tao ◽  
Zhijun Wu ◽  
Simonas Kecorius ◽  
...  

Abstract. The aim of this investigation was to obtain a better understanding of the variability of the cloud condensation nuclei (CCN) activity during new particle formation (NPF) events in an anthropogenically polluted atmosphere of the North China Plain (NCP). We investigated the size-resolved activation ratio as well as particle number size distribution, hygroscopicity, and volatility during a 4-week intensive field experiment in summertime at a regional atmospheric observatory in Xianghe. Interestingly, based on a case study, two types of NPF events were found, in which the newly formed particles exhibited either a higher or a lower hygroscopicity. Therefore, the CCN activity of newly formed particles in different NPF events was largely different, indicating that a simple parameterization of particle CCN activity during NPF events over the NCP might lead to poor estimates of CCN number concentration (NCCN). For a more accurate estimation of the potential NCCN during NPF events, the variation of CCN activity has to be taken into account. Considering that a fixed activation ratio curve or critical diameter are usually used to calculate NCCN, the influence of the variation of particle CCN activity on the calculation of NCCN during NPF events was evaluated based on the two parameterizations. It was found that NCCN might be underestimated by up to 30 % if a single activation ratio curve (representative of the region and season) were to be used in the calculation; and might be underestimated by up to 50 % if a fixed critical diameter (representative of the region and season) were used. Therefore, we suggest not using a fixed critical diameter in the prediction of NCCN in NPF. If real-time CCN activity data are not available, using a proper fixed activation ratio curve can be an alternative but compromised choice.


2011 ◽  
Vol 11 (4) ◽  
pp. 1565-1580 ◽  
Author(s):  
X. J. Shen ◽  
J. Y. Sun ◽  
Y. M. Zhang ◽  
B. Wehner ◽  
A. Nowak ◽  
...  

Abstract. Atmospheric particle number size distributions (size range 0.003–10 μm) were measured between March 2008 and August 2009 at Shangdianzi (SDZ), a rural research station in the North China Plain. These measurements were made in an attempt to better characterize the tropospheric background aerosol in Northern China. The mean particle number concentrations of the total particle, as well as the nucleation, Aitken, accumulation and coarse mode were determined to be 1.2 ± 0.9 × 104, 3.6 ± 7.9 × 103, 4.4 ± 3.4 × 103, 3.5 ± 2.8 × 103 and 2 ± 3 cm−3, respectively. A general finding was that the particle number concentration was higher during spring compared to the other seasons. The air mass origin had an important effect on the particle number concentration and new particle formation events. Air masses from northwest (i.e. inner Asia) favored the new particle formation events, while air masses from southeast showed the highest particle mass concentration. Significant diurnal variations in particle number were observed, which could be linked to new particle formation events, i.e. gas-to-particle conversion. During particle formation events, the number concentration of the nucleation mode rose up to maximum value of 104 cm−3. New particle formation events were observed on 36% of the effective measurement days. The formation rate ranged from 0.7 to 72.7 cm−3 s−1, with a mean value of 8.0 cm−3 s−1. The value of the nucleation mode growth rate was in the range of 0.3–14.5 nm h−1, with a mean value of 4.3 nm h−1. It was an essential observation that on many occasions the nucleation mode was able to grow into the size of cloud condensation nuclei (CCN) within a matter of several hours. Furthermore, the new particle formation was regularly followed by a measurable increase in particle mass concentration and extinction coefficient, indicative of a high abundance of condensable vapors in the atmosphere under study.


2015 ◽  
Vol 55 (1) ◽  
Author(s):  
Simonas Kecorius ◽  
Shenglan Zhang ◽  
Zhibin Wang ◽  
Johannes Größ ◽  
Nan Ma ◽  
...  

New particle formation is one of the major sources of atmospheric aerosol particles. Beside daytime nucleation, nocturnal new particle formation was also found in different regions around the world. Compared with daytime nucleation events, the understanding of nocturnal ones is still sparse. The variety of aerosol particle physico-chemical properties, including particle number size distribution, volatility and hygroscopicity were measured in the North China Plain during July–August 2013. During the observation period, rapid increase in ultrafine particle number concentration was attributed to new particle formation. The nocturnal new particle formation rate was 45 cm–3s–1, which is 1.25 times higher than an observed daytime value. Condensation sink was found to be 0.055 s–1.


2017 ◽  
Author(s):  
Jiangchuan Tao ◽  
Chunsheng Zhao ◽  
Ye Kuang ◽  
Gang Zhao ◽  
Chuanyang Shen ◽  
...  

Abstract. The number concentration of cloud condensation nuclei (CCN) plays a fundamental role in cloud physics. Instrumentations of direct measurements of CCN number concentration (NCCN) based on chamber technology are complex and costly, thus a simple way for measuring NCCN is needed. In this study, a new method for NCCN calculation based on measurements of a three-wavelength humidified nephelometer system is proposed. A three-wavelength humidified nephelometer system can measure aerosol light scattering coefficient (σsp) at three wavelengths and the light scattering enhancement factor (fRH). The Angstrom exponent (Å) inferred from σsp at three wavelengths provides information on mean predominate aerosol size and hygroscopicity parameter (κ) can be calculated from the combination of fRH and Å. Given this, a look-up table that involves σsp, κ and Å is established to predict NCCN. This method is validated with direct measurements of NCCN using a CCN counter on the North China Plain. Results show that relative deviations between calculated NCCN and measured NCCN are within 30 % and confirm the robustness of this method. This method enables simpler NCCN measurements because the humidified nephelometer system is easily operated and stable. Compared with the method of CCN counter, another advantage of this newly proposed method is that it can obtain NCCN at lower supersaturations in the ambient atmosphere.


2011 ◽  
Vol 11 (8) ◽  
pp. 3835-3846 ◽  
Author(s):  
Z. Z. Deng ◽  
C. S. Zhao ◽  
N. Ma ◽  
P. F. Liu ◽  
L. Ran ◽  
...  

Abstract. Size-resolved and bulk activation properties of aerosols were measured at a regional/suburban site in the North China Plain (NCP), which is occasionally heavily polluted by anthropogenic aerosol particles and gases. A Cloud Condensation Nuclei (CCN) closure study is conducted with bulk CCN number concentration (NCCN) and calculated CCN number concentration based on the aerosol number size distribution and size-resolved activation properties. The observed CCN number concentration (NCCN-obs) are higher than those observed in other locations than China, with average NCCN-obs of roughly 2000, 3000, 6000, 10 000 and 13 000 cm−3 at supersaturations of 0.056, 0.083, 0.17, 0.35 and 0.70%, respectively. An inferred critical dry diameter (Dm) is calculated based on the NCCN-obs and aerosol number size distribution assuming homogeneous chemical composition. The inferred cut-off diameters are in the ranges of 190–280, 160–260, 95–180, 65–120 and 50–100 nm at supersaturations of 0.056, 0.083, 0.17, 0.35 and 0.7%, with their mean values 230.1, 198.4, 128.4, 86.4 and 69.2 nm, respectively. Size-resolved activation measurements show that most of the 300 nm particles are activated at the investigated supersaturations, while almost no particles of 30 nm are activated even at the highest supersaturation of 0.72%. The activation ratio increases with increasing supersaturation and particle size. The slopes of the activation curves for ambient aerosols are not as steep as those observed in calibrations with ammonium sulfate suggesting that the observed aerosols is an external mixture of more hygroscopic and hydrophobic particles. The calculated CCN number concentrations (NCCN-calc) based on the size-resolved activation ratio and aerosol number size distribution correlate well with the NCCN-obs, and show an average overestimation of 19%. Sensitivity studies of the CCN closure show that the NCCN at each supersaturation is well predicted with the campaign average of size-resolved activation curves. These results indicate that the aerosol number size distribution is critical in the prediction of possible CCN. The CCN number concentration can be reliably estimated using time-averaged, size-resolved activation efficiencies without accounting for the temporal variations.


2011 ◽  
Vol 11 (12) ◽  
pp. 5959-5973 ◽  
Author(s):  
N. Ma ◽  
C. S. Zhao ◽  
A. Nowak ◽  
T. Müller ◽  
S. Pfeifer ◽  
...  

Abstract. The largest uncertainty in the estimation of climate forcing stems from atmospheric aerosols. In early spring and summer of 2009, two periods of in-situ measurements on aerosol physical and chemical properties were conducted within the HaChi (Haze in China) project at Wuqing, a town between Beijing and Tianjin in the North China Plain (NCP). Aerosol optical properties, including the scattering coefficient (σsp), the hemispheric back scattering coefficient (σbsp), the absorption coefficient (σap), as well as the single scattering albedo (ω), are presented. The diurnal and seasonal variations are analyzed together with meteorology and satellite data. The mean values of σsp, 550 nm of the dry aerosol in spring and summer are 280±253 and 379±251 Mm−1, respectively. The average σap for the two periods is respectively 47±38 and 43±27 Mm−1. The mean values of ω at the wavelength of 637 nm are 0.82±0.05 and 0.86±0.05 for spring and summer, respectively. The relative high levels of σsp and σbsp are representative of the regional aerosol pollution in the NCP. Pronounced diurnal cycle of $σsp, σap and ω are found, mainly influenced by the evolution of boundary layer and the accumulation of local emissions during nighttime. The pollutants transported from the southwest of the NCP are more significant than that from the two megacities, Beijing and Tianjin, in both spring and summer. An optical closure experiment is conducted to better understand the uncertainties of the measurements. Good correlations (R>0.98) are found between the values measured by the nephelometer and the values calculated with a modified Mie model. The Monte Carlo simulation shows an uncertainty of about 30 % for the calculations. Considering all possible uncertainties of measurements, calculated σsp and σbsp agree well with the measured values, indicating a stable performance of instruments and thus reliable aerosol optical data.


Sign in / Sign up

Export Citation Format

Share Document