scholarly journals Assessment and application of clustering techniques to atmospheric particle number size distribution for the purpose of source apportionment

2014 ◽  
Vol 14 (10) ◽  
pp. 15257-15281 ◽  
Author(s):  
F. Salimi ◽  
Z. Ristovski ◽  
M. Mazaheri ◽  
R. Laiman ◽  
L. R. Crilley ◽  
...  

Abstract. Long-term measurements of particle number size distribution (PNSD) produce a very large number of observations and their analysis requires an efficient approach in order to produce results in the least possible time and with maximum accuracy. Clustering techniques are a family of sophisticated methods which have been recently employed to analyse PNSD data, however, very little information is available comparing the performance of different clustering techniques on PNSD data. This study aims to apply several clustering techniques (i.e. K-means, PAM, CLARA and SOM) to PNSD data, in order to identify and apply the optimum technique to PNSD data measured at 25 sites across Brisbane, Australia. A new method, based on the Generalised Additive Model (GAM) with a basis of penalised B-splines, was proposed to parameterise the PNSD data and the temporal weight of each cluster was also estimated using the GAM. In addition, each cluster was associated with its possible source based on the results of this parameterisation, together with the characteristics of each cluster. The performances of four clustering techniques were compared using the Dunn index and silhouette width validation values and the K-means technique was found to have the highest performance, with five clusters being the optimum. Therefore, five clusters were found within the data using the K-means technique. The diurnal occurrence of each cluster was used together with other air quality parameters, temporal trends and the physical properties of each cluster, in order to attribute each cluster to its source and origin. The five clusters were attributed to three major sources and origins, including regional background particles, photochemically induced nucleated particles and vehicle generated particles. Overall, clustering was found to be an effective technique for attributing each particle size spectra to its source and the GAM was suitable to parameterise the PNSD data. These two techniques can help researchers immensely in analysing PNSD data for characterisation and source apportionment purposes.

2014 ◽  
Vol 14 (21) ◽  
pp. 11883-11892 ◽  
Author(s):  
F. Salimi ◽  
Z. Ristovski ◽  
M. Mazaheri ◽  
R. Laiman ◽  
L. R. Crilley ◽  
...  

Abstract. Long-term measurements of particle number size distribution (PNSD) produce a very large number of observations and their analysis requires an efficient approach in order to produce results in the least possible time and with maximum accuracy. Clustering techniques are a family of sophisticated methods that have been recently employed to analyse PNSD data; however, very little information is available comparing the performance of different clustering techniques on PNSD data. This study aims to apply several clustering techniques (i.e. K means, PAM, CLARA and SOM) to PNSD data, in order to identify and apply the optimum technique to PNSD data measured at 25 sites across Brisbane, Australia. A new method, based on the Generalised Additive Model (GAM) with a basis of penalised B-splines, was proposed to parameterise the PNSD data and the temporal weight of each cluster was also estimated using the GAM. In addition, each cluster was associated with its possible source based on the results of this parameterisation, together with the characteristics of each cluster. The performances of four clustering techniques were compared using the Dunn index and Silhouette width validation values and the K means technique was found to have the highest performance, with five clusters being the optimum. Therefore, five clusters were found within the data using the K means technique. The diurnal occurrence of each cluster was used together with other air quality parameters, temporal trends and the physical properties of each cluster, in order to attribute each cluster to its source and origin. The five clusters were attributed to three major sources and origins, including regional background particles, photochemically induced nucleated particles and vehicle generated particles. Overall, clustering was found to be an effective technique for attributing each particle size spectrum to its source and the GAM was suitable to parameterise the PNSD data. These two techniques can help researchers immensely in analysing PNSD data for characterisation and source apportionment purposes.


Tellus B ◽  
2013 ◽  
Vol 65 (1) ◽  
pp. 19786 ◽  
Author(s):  
Giovanna Ripamonti ◽  
Leena Järvi ◽  
Bjarke Mølgaard ◽  
Tareq Hussein ◽  
Annika Nordbo ◽  
...  

2007 ◽  
Vol 41 (8) ◽  
pp. 1759-1767 ◽  
Author(s):  
Veli-Matti Kerminen ◽  
Tuomo A. Pakkanen ◽  
Timo Mäkelä ◽  
Risto E. Hillamo ◽  
Markus Sillanpää ◽  
...  

2016 ◽  
Author(s):  
Riikka Väänänen ◽  
Radovan Krejci ◽  
Hanna E. Manninen ◽  
Antti Manninen ◽  
Janne Lampilahti ◽  
...  

Abstract. This study explores the vertical and horizontal variability of the particle number size distribution from two flight measurements campaigns over a boreal forest in Hyytiälä, Finland during May–June 2013 and March–April 2014, respectively. Our other aims were to study the spatial extent of new particle formation events and to compare the airborne observation with the ground measurements from the SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations) field station located in Hyytiälä. The airborne measurements extended vertically 3.8 km and horizontally 30 km from the station. A Cessna 172 aircraft was used as a measurement platform. The measured parameters included the particle number concentration (> 3 nm) and particle number size distribution (10–400 nm). The airborne data used in this study were equal to 111 flight hours. The measurements showed that despite local fluctuations there was a good agreement between the on-ground and airborne measurements inside the planetary boundary layer. On median, the airborne total number concentration was found to be 10 % larger than at the ground level. The seasonal and meteorological differences between the campaigns were reflected in aerosol properties. NPF days showed areas of intensified NPF on a scale from kilometres up to couple of tens of kilometres in the planetary boundary layer. NPF was also observed frequently in the free troposphere.


Sign in / Sign up

Export Citation Format

Share Document