scholarly journals Impact of an improved WRF-urban canopy model on diurnal air temperature simulation over northern Taiwan

2015 ◽  
Vol 15 (20) ◽  
pp. 28483-28516
Author(s):  
C.-Y. Lin ◽  
C.-J. Su ◽  
H. Kusaka ◽  
Y. Akimoto ◽  
Y. F. Sheng ◽  
...  

Abstract. This study evaluated the impact of urbanization over northern Taiwan using the Weather Research and Forecasting (WRF) model coupled with the Noah land-surface model and a modified Urban Canopy Model (WRF-UCM2D). In the original UCM coupled in WRF (WRF-UCM), when the land use in the model grid net is identified as "urban", the urban fraction value is fixed. Similarly, the UCM assumes the distribution of anthropogenic heat (AH) to be constant. Such not only may lead to over- or underestimation, the temperature difference between urban and non-urban areas has also been neglected. To overcome the above-mentioned limitations and to improve the performance of the original UCM model, WRF-UCM is modified to consider the 2-D urban fraction and AH (WRF-UCM2D). The two models were found to have comparable simulation performance for urban areas but large differences in simulated results were observed for non-urban, especially at nighttime. WRF-UCM2D yielded a higher R2 than WRF-UCM (0.72 vs. 0.48, respectively), while bias and RMSE achieved by WRF-UCM2D were both significantly smaller than those attained by WRF-UCM (0.27 and 1.27 vs. 1.12 and 1.89, respectively). In other words, the improved model not only enhanced correlation but also reduced bias and RMSE for the nighttime data of non-urban areas. WRF-UCM2D performed much better than WRF-UCM at non-urban stations with low urban fraction during nighttime. The improved simulation performance of WRF-UCM2D at non-urban area is attributed to the energy exchange which enables efficient turbulence mixing at low urban fraction. The achievement of this study has a crucial implication for assessing the impacts of urbanization on air quality and regional climate.

2016 ◽  
Vol 16 (3) ◽  
pp. 1809-1822 ◽  
Author(s):  
Chuan-Yao Lin ◽  
Chiung-Jui Su ◽  
Hiroyuki Kusaka ◽  
Yuko Akimoto ◽  
Yang-Fan Sheng ◽  
...  

Abstract. This study evaluates the impact of urbanization over northern Taiwan using the Weather Research and Forecasting (WRF) Model coupled with the Noah land-surface model and a modified urban canopy model (WRF–UCM2D). In the original UCM coupled to WRF (WRF–UCM), when the land use in the model grid is identified as "urban", the urban fraction value is fixed. Similarly, the UCM assumes the distribution of anthropogenic heat (AH) to be constant. This may not only lead to over- or underestimation of urban fraction and AH in urban and non-urban areas, but spatial variation also affects the model-estimated temperature. To overcome the abovementioned limitations and to improve the performance of the original UCM model, WRF–UCM is modified to consider the 2-D urban fraction and AH (WRF–UCM2D).The two models were found to have comparable temperature simulation performance for urban areas, but large differences in simulated results were observed for non-urban areas, especially at nighttime. WRF–UCM2D yielded a higher correlation coefficient (R2) than WRF–UCM (0.72 vs. 0.48, respectively), while bias and RMSE achieved by WRF–UCM2D were both significantly smaller than those attained by WRF–UCM (0.27 and 1.27 vs. 1.12 and 1.89, respectively). In other words, the improved model not only enhanced correlation but also reduced bias and RMSE for the nighttime data of non-urban areas. WRF–UCM2D performed much better than WRF–UCM at non-urban stations with a low urban fraction during nighttime. The improved simulation performance of WRF–UCM2D in non-urban areas is attributed to the energy exchange which enables efficient turbulence mixing at a low urban fraction. The result of this study has a crucial implication for assessing the impacts of urbanization on air quality and regional climate.


2020 ◽  
Author(s):  
Chunlei Meng ◽  
Junxia Dou

Abstract. Urban land surface model (ULSM) is an important tool to study the climatic effect of human activity. Now there are two main methods to parameterize the effects of human activity, the coupling method and the integrating method. For the coupled method, the urban canopy model (UCM) was developed and coupled with the land surface model for the natural land surfaces. For the integrated method, the urban land surface model was built directly based on the traditional land surface model. In this paper, the Noah Single Layer Urban Canopy Model (Noah/SLUCM) and the Integrated Urban land Model (IUM) were compared using the observed fluxes data at the 325-meter meteorology tower in Beijing. Through the comparison, the key factors and physical processes of the urban land surface model which have significant impact on the performance of ULSM were found out. The results indicate that the absorbed solar radiation of urban surface was reduced by the solar radiation scattering, the absorption of building roof and wall, and the shading effect of urban canopy and tall buildings. Urban surface roughness length and friction velocity are important in urban sensible heat flux simulation. Urban water balance and impervious surface evaporation (ISE) are important in urban latent heat flux simulation.


2018 ◽  
Author(s):  
Peter Huszar ◽  
Michal Belda ◽  
Jan Karlický ◽  
Tatsiana Bardachova ◽  
Tomas Halenka ◽  
...  

Abstract. The regional climate model RegCM4 extended with the land-surface model CLM4.5 was coupled to the chemistry transport model CAMx to analyze the impact of urban meteorological forcing on the surface fine aerosol (PM2.5) concentrations for summer conditions over the 2001–2005 period focusing on the area of Europe. Starting with the analysis of the meteorological modifications caused by urban canopy forcing we found significant increases of urban surface temperatures (up to 2–3 K), decrease of specific humidity (by up to 0.4–0.6 g/kg) reduction of wind speed (up to −1 m/s) and enhancement of vertical turbulent diffusion coefficient (up to 60–70 m2/s). These modifications translated into significant changes in surface aerosol concentrations that were calculated by cascading experimental approach. First, none of the urban meteorological effects were considered. Than, the temperature effect was added, than the humidity, the wind and finally, the enhanced turbulence was considered in the chemical runs. This facilitated the understanding of the underlying processes acting to modify urban aerosol concentrations. Moreover, we looked at the impact of the individual aerosol components as well. The urban induced temperature changes resulted in decreases of PM2.5 by −1.5 to −2 μg/m3, while decreased urban winds resulted in increases by 1–2 μg/m3. The enhanced turbulence over urban areas results in decreases of PM2.5 by −2 μg/m3. The combined effect of all individual impact depends on the competition between the partial impacts and can reach up to −3 μg/m3 for some cities, especially were the temperature impact was stronger in magnitude than the wind impact. The effect of changed humidity was found to be minor. The main contributor to the temperature impact is the modification of secondary inorganic aerosols, mainly nitrates, while the wind and turbulence impact is most pronounced in case of primary aerosol (primary black and organic carbon and other fine particle matter). The overall as well as individual impacts on secondary organic aerosol is very small with the increased turbulence acting as the main driver. The analysis of the vertical extend of the aerosol changes showed that the perturbations caused by urban canopy forcing, besides being large near the surface, have a secondary maximum for turbulence and wind impact over higher model levels, which is attributed to the vertical extend of the changes in turbulence over urban areas. The validation of model data with measurements showed good agreement and we could detect a clear model improvement at some areas when including the urban canopy meteorological effects in our chemistry simulations.


2017 ◽  
Vol 56 (5) ◽  
pp. 1405-1430 ◽  
Author(s):  
Larissa J. Reames ◽  
David J. Stensrud

AbstractThe world’s population is increasingly concentrated in large urban areas. Many observational and modeling studies have explored how these large, population-dense cities modify local and mesoscale atmospheric phenomena. These modeling studies often use an urban canopy model to parameterize urban surfaces. However, it is unclear whether this approach is appropriate for more suburban cities, such as those found in the Great Plains. Thus, the Weather Research and Forecasting Model was run for a week over Oklahoma City, Oklahoma, and results were compared with observations. Overall, four configurations were examined. Two simulations used the Noah LSM, one with all urban areas removed (CTRL), and the other with urban areas parameterized by a modified Noah land surface model with three urban categories (LSMMOD). Additional simulations utilized a single-layer urban canopy model (SLUCM) either with default urban fraction values (SLUCM1) or with urban fractions taken from the National Land Cover Database (SLUCM2). Results from the three urban runs compared favorably to high-density temperature observations of the urban heat island. The SLUCM1 run was the most realistic, although the urban fractions applied were the least representative of Oklahoma City. All urban runs also produced a drier and deeper planetary boundary layer over the city. The prediction of near-surface winds was most problematic, with the two SLUCM runs unable to correctly reproduce reduced wind speeds over the city. The modified Noah LSM provided best overall agreement with observations and represents a reasonable option for simulating the urban effects of more-suburban cities.


2014 ◽  
Vol 15 (4) ◽  
pp. 1440-1456 ◽  
Author(s):  
Pouya Vahmani ◽  
Terri S. Hogue

Abstract The current research examines the influence of irrigation on urban hydrological cycles through the development of an irrigation scheme within the Noah land surface model (LSM)–Single Layer Urban Canopy Model (SLUCM) system. The model is run at a 30-m resolution for a 2-yr period over a 49 km2 urban domain in the Los Angeles metropolitan area. A sensitivity analysis indicates significant sensitivity relative to both the amount and timing of irrigation on diurnal and monthly energy budgets, hydrological fluxes, and state variables. Monthly residential water use data and three estimates of outdoor water consumption are used to calibrate the developed irrigation scheme. Model performance is evaluated using a previously developed MODIS–Landsat evapotranspiration (ET) and Landsat land surface temperature (LST) products as well as hourly ET observations through the California Irrigation Management Information System (CIMIS). Results show that the Noah LSM–SLUCM realistically simulates the diurnal and seasonal variations of ET when the irrigation module is incorporated. However, without irrigation, the model produces large biases in ET simulations. The ET errors for the nonirrigation simulations are −56 and −90 mm month−1 for July 2003 and 2004, respectively, while these values decline to −6 and −11 mm month−1 over the same 2 months when the proposed irrigation scheme is adopted. Results show that the irrigation-induced increase in latent heat flux leads to a decrease in LST of about 2°C in urban parks. The developed modeling framework can be utilized for a number of applications, ranging from outdoor water use estimation to climate change impact assessments.


2016 ◽  
Author(s):  
M. García-Díez ◽  
D. Lauwaet ◽  
H. Hooyberghs ◽  
J. Ballester ◽  
K. De Ridder ◽  
...  

Abstract. As most of the population lives in urban environments, the simulation of the urban climate has become a key problem in the framework of the climate change impact assessment. However, the high computational power required by these simulations is a severe limitation. Here we present a study on the performance of a Urban Climate Model (UrbClim), designed to be several orders of magnitude faster than a full-fledge mesoscale model. The simulations are validated with station data and with land surface temperature observations retrieved by satellites. To explore the advantages of using a simple model like UrbClim, the results are compared with a simulation carried out with a state-of-the-art mesoscale model, the Weather Research and Forecasting model, using an Urban Canopy model. The effect of using different driving data is explored too, by using both relatively low resolution reanalysis data (70 km) and a higher resolution forecast model (15 km). The results show that, generally, the performance of the simple model is comparable to or better than the mesoscale model. The exception are the winds and the day-to-day correlation in the reanalysis driven run, but these problems disappear when taking the boundary conditions from the higher resolution forecast model.


2008 ◽  
Vol 47 (2) ◽  
pp. 509-524 ◽  
Author(s):  
Hongbin Zhang ◽  
Naoki Sato ◽  
Takeki Izumi ◽  
Keisuke Hanaki ◽  
Toshiya Aramaki

Abstract A single-layer urban canopy model was integrated into a nonhydrostatic meteorological model, the Regional Atmospheric Modeling System (RAMS). In the new model, called RAMS-Urban Canopy (RAMS-UC), anthropogenic heat emission was also considered. The model can be used to calculate radiation, heat, and water fluxes in an urban area, considering the geometric structure and thermodynamic characteristics of the urban canopy. The urban canopy was represented by normalized street canyons of infinite length, which were bordered by buildings on both sides. The urban region was covered by three types of surfaces: roof, wall, and road. Anthropogenic heat was emitted from these surfaces. Sensitivity tests between the original RAMS and the modified one were carried out by simulating the urban heat island (UHI) of Chongqing, located in an inland mountainous region in China. The results of the model were also compared with the observational data. It was found that the original model could not accurately simulate the UHI, in particular at night, whereas the accuracy was significantly improved in the RAMS-UC. The improvement is substantial even when anthropogenic heat emission is set to zero.


2012 ◽  
Vol 29 (3) ◽  
pp. 328-346 ◽  
Author(s):  
Michael Carter ◽  
J. Marshall Shepherd ◽  
Steve Burian ◽  
Indu Jeyachandran

Abstract Urban–coastal circulations affect urban weather, dispersion and transport of pollutants and contaminants, and climate. Proper characterization and prediction of thermodynamic and dynamic processes in such environments are warranted. A new generation of observation and modeling systems is enabling unprecedented characterization of the three-dimensionality of the urban environment, including morphological parameters. Urban areas of Houston, Texas, are classified according to lidar-measured building heights and assigned typical urban land surface parameters appropriate to each classification. The lidar data were degraded from 1 m to the model resolution (1 km) with the goal of evaluating the impact of degraded resolution urban canopy parameters (UCPs) and three-dimensionality on the coastal–urban mesoscale circulations in comparison to typical two-dimensional urban slab approaches. The study revealed complex interactions between the sea breeze and urban heat island and offers a novel diagnostic tool, the bulk Richardson shear number, for identifying shallow mesoscale circulation. Using the Advanced Research Weather Research and Forecasting model (ARW-WRF) coupled to an atmosphere–land surface–urban canopy model, the authors simulated a theoretical sea-breeze day and confirmed that while coastal morphology can itself lead to complex sea-breeze front structures, including preferred areas of vertical motion, the urban environment can have an impact on the evolution of the sea-breeze mesoscale boundary. The inclusion of lidar-derived UCPs, even at degraded resolution, in the model’s land surface representation can lead to significant differences in patterns of skin surface temperature, convergence, and vertical motion, which have implications for many aspects of urban weather.


Sign in / Sign up

Export Citation Format

Share Document