scholarly journals Impact of urban canopy meteorological forcing on aerosol concentrations

2018 ◽  
Author(s):  
Peter Huszar ◽  
Michal Belda ◽  
Jan Karlický ◽  
Tatsiana Bardachova ◽  
Tomas Halenka ◽  
...  

Abstract. The regional climate model RegCM4 extended with the land-surface model CLM4.5 was coupled to the chemistry transport model CAMx to analyze the impact of urban meteorological forcing on the surface fine aerosol (PM2.5) concentrations for summer conditions over the 2001–2005 period focusing on the area of Europe. Starting with the analysis of the meteorological modifications caused by urban canopy forcing we found significant increases of urban surface temperatures (up to 2–3 K), decrease of specific humidity (by up to 0.4–0.6 g/kg) reduction of wind speed (up to −1 m/s) and enhancement of vertical turbulent diffusion coefficient (up to 60–70 m2/s). These modifications translated into significant changes in surface aerosol concentrations that were calculated by cascading experimental approach. First, none of the urban meteorological effects were considered. Than, the temperature effect was added, than the humidity, the wind and finally, the enhanced turbulence was considered in the chemical runs. This facilitated the understanding of the underlying processes acting to modify urban aerosol concentrations. Moreover, we looked at the impact of the individual aerosol components as well. The urban induced temperature changes resulted in decreases of PM2.5 by −1.5 to −2 μg/m3, while decreased urban winds resulted in increases by 1–2 μg/m3. The enhanced turbulence over urban areas results in decreases of PM2.5 by −2 μg/m3. The combined effect of all individual impact depends on the competition between the partial impacts and can reach up to −3 μg/m3 for some cities, especially were the temperature impact was stronger in magnitude than the wind impact. The effect of changed humidity was found to be minor. The main contributor to the temperature impact is the modification of secondary inorganic aerosols, mainly nitrates, while the wind and turbulence impact is most pronounced in case of primary aerosol (primary black and organic carbon and other fine particle matter). The overall as well as individual impacts on secondary organic aerosol is very small with the increased turbulence acting as the main driver. The analysis of the vertical extend of the aerosol changes showed that the perturbations caused by urban canopy forcing, besides being large near the surface, have a secondary maximum for turbulence and wind impact over higher model levels, which is attributed to the vertical extend of the changes in turbulence over urban areas. The validation of model data with measurements showed good agreement and we could detect a clear model improvement at some areas when including the urban canopy meteorological effects in our chemistry simulations.

2018 ◽  
Vol 18 (19) ◽  
pp. 14059-14078 ◽  
Author(s):  
Peter Huszar ◽  
Michal Belda ◽  
Jan Karlický ◽  
Tatsiana Bardachova ◽  
Tomas Halenka ◽  
...  

Abstract. The regional climate model RegCM4 extended with the land surface model CLM4.5 was coupled to the chemistry transport model CAMx to analyze the impact of urban meteorological forcing on surface fine aerosol (PM2.5) concentrations for summer conditions over the 2001–2005 period, focusing on the area of Europe. Starting with the analysis of the meteorological modifications caused by urban canopy forcing, we found a significant increase in urban surface temperatures (up to 2–3 K), a decrease of specific humidity (by up to 0.4–0.6 gkg−1), a reduction of wind speed (up to −1 ms−1) and an enhancement of vertical turbulent diffusion coefficient (up to 60–70 m2s−1). These modifications translated into significant changes in surface aerosol concentrations that were calculated by a “cascading” experimental approach. First, none of the urban meteorological effects were considered. Then, the temperature effect was added, then the humidity and the wind, and finally, the enhanced turbulence was considered in the chemical runs. This facilitated the understanding of the underlying processes acting to modify urban aerosol concentrations. Moreover, we looked at the impact of the individual aerosol components as well. The urbanization-induced temperature changes resulted in a decrease of PM2.5 by −1.5 to −2 µg m−3, while decreased urban winds resulted in increases by 1–2 µg m−3. The enhanced turbulence over urban areas resulted in decreases of PM2.5 by −2 µg m−3. The combined effect of all individual impact depends on the competition between the partial impacts and can reach up to −3 µg m−3 for some cities, especially when the temperature impact was stronger in magnitude than the wind impact. The effect of changed humidity was found to be minor. The main contributor to the temperature impact is the modification of secondary inorganic aerosols, mainly nitrates, while the wind and turbulence impact is most pronounced in the case of primary aerosol (primary black and organic carbon and other fine particle matter). The overall as well as individual impacts on secondary organic aerosol are very small, with the increased turbulence acting as the main driver. The analysis of the vertical extent of the aerosol changes showed that the perturbations caused by urban canopy forcing, besides being large near the surface, have a secondary maximum for turbulence and wind impact over higher model levels, which is attributed to the vertical extent of the changes in turbulence over urban areas. The validation of model data with measurements showed good agreement, and we could detect a clear model improvement in some areas when including the urban canopy meteorological effects in our chemistry simulations.


2016 ◽  
Vol 16 (3) ◽  
pp. 1809-1822 ◽  
Author(s):  
Chuan-Yao Lin ◽  
Chiung-Jui Su ◽  
Hiroyuki Kusaka ◽  
Yuko Akimoto ◽  
Yang-Fan Sheng ◽  
...  

Abstract. This study evaluates the impact of urbanization over northern Taiwan using the Weather Research and Forecasting (WRF) Model coupled with the Noah land-surface model and a modified urban canopy model (WRF–UCM2D). In the original UCM coupled to WRF (WRF–UCM), when the land use in the model grid is identified as "urban", the urban fraction value is fixed. Similarly, the UCM assumes the distribution of anthropogenic heat (AH) to be constant. This may not only lead to over- or underestimation of urban fraction and AH in urban and non-urban areas, but spatial variation also affects the model-estimated temperature. To overcome the abovementioned limitations and to improve the performance of the original UCM model, WRF–UCM is modified to consider the 2-D urban fraction and AH (WRF–UCM2D).The two models were found to have comparable temperature simulation performance for urban areas, but large differences in simulated results were observed for non-urban areas, especially at nighttime. WRF–UCM2D yielded a higher correlation coefficient (R2) than WRF–UCM (0.72 vs. 0.48, respectively), while bias and RMSE achieved by WRF–UCM2D were both significantly smaller than those attained by WRF–UCM (0.27 and 1.27 vs. 1.12 and 1.89, respectively). In other words, the improved model not only enhanced correlation but also reduced bias and RMSE for the nighttime data of non-urban areas. WRF–UCM2D performed much better than WRF–UCM at non-urban stations with a low urban fraction during nighttime. The improved simulation performance of WRF–UCM2D in non-urban areas is attributed to the energy exchange which enables efficient turbulence mixing at a low urban fraction. The result of this study has a crucial implication for assessing the impacts of urbanization on air quality and regional climate.


2015 ◽  
Vol 15 (20) ◽  
pp. 28483-28516
Author(s):  
C.-Y. Lin ◽  
C.-J. Su ◽  
H. Kusaka ◽  
Y. Akimoto ◽  
Y. F. Sheng ◽  
...  

Abstract. This study evaluated the impact of urbanization over northern Taiwan using the Weather Research and Forecasting (WRF) model coupled with the Noah land-surface model and a modified Urban Canopy Model (WRF-UCM2D). In the original UCM coupled in WRF (WRF-UCM), when the land use in the model grid net is identified as "urban", the urban fraction value is fixed. Similarly, the UCM assumes the distribution of anthropogenic heat (AH) to be constant. Such not only may lead to over- or underestimation, the temperature difference between urban and non-urban areas has also been neglected. To overcome the above-mentioned limitations and to improve the performance of the original UCM model, WRF-UCM is modified to consider the 2-D urban fraction and AH (WRF-UCM2D). The two models were found to have comparable simulation performance for urban areas but large differences in simulated results were observed for non-urban, especially at nighttime. WRF-UCM2D yielded a higher R2 than WRF-UCM (0.72 vs. 0.48, respectively), while bias and RMSE achieved by WRF-UCM2D were both significantly smaller than those attained by WRF-UCM (0.27 and 1.27 vs. 1.12 and 1.89, respectively). In other words, the improved model not only enhanced correlation but also reduced bias and RMSE for the nighttime data of non-urban areas. WRF-UCM2D performed much better than WRF-UCM at non-urban stations with low urban fraction during nighttime. The improved simulation performance of WRF-UCM2D at non-urban area is attributed to the energy exchange which enables efficient turbulence mixing at low urban fraction. The achievement of this study has a crucial implication for assessing the impacts of urbanization on air quality and regional climate.


2012 ◽  
Vol 29 (3) ◽  
pp. 328-346 ◽  
Author(s):  
Michael Carter ◽  
J. Marshall Shepherd ◽  
Steve Burian ◽  
Indu Jeyachandran

Abstract Urban–coastal circulations affect urban weather, dispersion and transport of pollutants and contaminants, and climate. Proper characterization and prediction of thermodynamic and dynamic processes in such environments are warranted. A new generation of observation and modeling systems is enabling unprecedented characterization of the three-dimensionality of the urban environment, including morphological parameters. Urban areas of Houston, Texas, are classified according to lidar-measured building heights and assigned typical urban land surface parameters appropriate to each classification. The lidar data were degraded from 1 m to the model resolution (1 km) with the goal of evaluating the impact of degraded resolution urban canopy parameters (UCPs) and three-dimensionality on the coastal–urban mesoscale circulations in comparison to typical two-dimensional urban slab approaches. The study revealed complex interactions between the sea breeze and urban heat island and offers a novel diagnostic tool, the bulk Richardson shear number, for identifying shallow mesoscale circulation. Using the Advanced Research Weather Research and Forecasting model (ARW-WRF) coupled to an atmosphere–land surface–urban canopy model, the authors simulated a theoretical sea-breeze day and confirmed that while coastal morphology can itself lead to complex sea-breeze front structures, including preferred areas of vertical motion, the urban environment can have an impact on the evolution of the sea-breeze mesoscale boundary. The inclusion of lidar-derived UCPs, even at degraded resolution, in the model’s land surface representation can lead to significant differences in patterns of skin surface temperature, convergence, and vertical motion, which have implications for many aspects of urban weather.


2021 ◽  
Author(s):  
Peter Huszar ◽  
Jan Karlický ◽  
Jana Marková ◽  
Tereza Nováková ◽  
Marina Liaskoni ◽  
...  

Abstract. Urban areas are hot-spots of intense emissions and they influence air-quality not only locally but on regional or even global scales. The impact of urban emissions over different scales depends on the dilution and chemical transformation of the urban plumes which are governed by the local and regional scale meteorological conditions. These are influenced by the presence of urbanized land-surface via the so called urban canopy meteorological forcing (UCMF). In this study, we investigate for selected central European cities (Berlin, Budapest, Munich, Prague, Vienna and Warsaw), how the urban emission impact (UEI) is modulated by the UCMF for present day climate conditions (2015–2016) using three regional climate-chemistry models: the regional climate models RegCM and WRF-Chem (its meteorological part), the chemistry transport model CAMx coupled to either RegCM and WRF and the “chemical” component of WRF-Chem. The UCMF was calculated by replacing the urbanized surface by rural one while the UEI was estimated by removing all anthropogenic emissions from the selected cities. We analyzed the urban emissions induced changes of near surface concentrations of NO2, O3 and PM2.5. We found increases of NO2 and PM2.5 concentrations over cities by 4–6 ppbv, and 4–6 μgm−3, respectively meaning that about 40–60 % and 20–40 % of urban concentrations of NO2 and PM2.5 are caused by local emissions and the rest is the result of emissions from surrounding rural areas. We showed that if UCMF is included, the UEI of these pollutants is about 40–60 % smaller, or in other words, the urban emission impact is overestimated if urban canopy effects are not taken into account. In case of ozone, models due to UEI usually predict decreases around −2 to −4 ppbv (about 10–20 %), which is again smaller if UCMF is considered (by about 60 %). We further showed that the impact on extreme (95th percentile) air-pollution is much stronger, as well as the modulation of UEI is larger for such situations. Finally, we evaluated the contribution of the urbanization induced modifications of vertical eddy-diffusion to the modulation of UEI, and found that it alone is able to explain the modelled decrease of the urban emission impact if the effects of UCMF are considered. In summary, our results showed that the meteorological changes resulting from urbanization have to be included in regional model studies if they intend to quantify the regional fingerprint of urban emissions. Ignoring these meteorological changes can lead to strong overestimation of UEI.


2021 ◽  
Author(s):  
Peter Huszar ◽  
Jan Karlicky ◽  
Jana Markova ◽  
Tereza Novakova ◽  
Marina Liaskoni ◽  
...  

<p>Urban canopies impact the meteorological conditions in the planetary boundary layer (PBL) and above in many ways: apart from urban heat island effect, the urban breeze circulation can form. Further, the enhanced drag causes intensification of the turbulent diffusion leading to elevated PBL height and this drag, at the same time causes lower windspeeds. These changes together act as a 'meteorological forcing' for the chemical processes involing transport, diffusion and chemical transformation of urban pollutants in the urban canopy and over larger scales, therefor we use the term urban canopy meteorological forcing (UCMF). Using regional scale coupled chemistry-climate models over central Europe (involving models RegCM, CAMx and WRF-Chem),  we investigate here how the UCMF influences the urban emissions and their dispersion into regional scales. The analysis covers key pollutants as O<sub>3</sub>, NO<sub>2</sub> and PM2.5 and the 2015-2016 period. </p><p>While urban emissions contribute by about 60-80% to the total NO<sub>2</sub> and PM2.5 concentrations in cities, for ozone, they cause decrease in the urban cores and slight increase over sourrounding rural areas. More importantly, we found that if UCMF is considered, the impacts on all three pollutants are reduced, by about 20-30%. This is caused by the fact that vertical turbulence is greatly enhanced in urban areas leading to reduced fingerprint of the urban emissions (the case of NO<sub>2</sub> and PM2.5) while in case of O<sub>3</sub>, reduction of the NO<sub>2</sub> impact means smaller first-order titraltion therefor higher ozone concentrations - i.e. the ozone fingerprint of urban emissions is smaller. Our analysis showed that for evaluating the impact of urban emissions over regional scales, the meterological effects caused by the urban canopy have to be considered in modeling studies.</p>


2019 ◽  
Vol 11 (8) ◽  
pp. 892 ◽  
Author(s):  
Hahn Chul Jung ◽  
Augusto Getirana ◽  
Kristi R. Arsenault ◽  
Thomas R.H. Holmes ◽  
Amy McNally

An evapotranspiration (ET) ensemble composed of 36 land surface model (LSM) experiments and four diagnostic datasets (GLEAM, ALEXI, MOD16, and FLUXNET) is used to investigate uncertainties in ET estimate over five climate regions in West Africa. Diagnostic ET datasets show lower uncertainty estimates and smaller seasonal variations than the LSM-based ET values, particularly in the humid climate regions. Overall, the impact of the choice of LSMs and meteorological forcing datasets on the modeled ET rates increases from north to south. The LSM formulations and parameters have the largest impact on ET in humid regions, contributing to 90% of the ET uncertainty estimates. Precipitation contributes to the ET uncertainty primarily in arid regions. The LSM-based ET estimates are sensitive to the uncertainty of net radiation in arid region and precipitation in humid region. This study serves as support for better determining water availability for agriculture and livelihoods in Africa with earth observations and land surface models.


2009 ◽  
Vol 48 (2) ◽  
pp. 217-231 ◽  
Author(s):  
Lahouari Bounoua ◽  
Abdelmounaine Safia ◽  
Jeffrey Masek ◽  
Christa Peters-Lidard ◽  
Marc L. Imhoff

Abstract The authors develop a land use map discriminating urban surfaces from other cover types over a semiarid region in North Africa and use it in a land surface model to assess the impact of urbanized land on surface energy, water, and carbon balances. Unlike in temperate climates where urbanization creates a marked heat island effect, this effect is not strongly marked in semiarid regions. During summer, the urban class results in an additional warming of 1.45°C during daytime and 0.81°C at night relative to that simulated for needleleaf trees under similar climate conditions. Seasonal temperatures show that urban areas are warmer than their surrounding areas during summer and slightly cooler in winter. The hydrological cycle is practically “shut down” during summer and is characterized by relatively large amounts of runoff in winter. The authors estimate the annual amount of carbon uptake to be 1.94 million metric tons with only 11.9% assimilated during the rainy season. However, if urbanization expands to reach 50% of the total area excluding forests, the annual total carbon uptake will decline by 35% and the July mean temperature would increase only 0.10°C relative to the current situation. In contrast, if urbanization expands to 50% of the total land excluding forests and croplands but all short vegetation is replaced by native broadleaf deciduous trees, the annual carbon uptake would increase by 39% and the July mean temperature would decrease by 0.9°C relative to the current configuration. These results provide guidelines for urban planners and land use managers and indicate possibilities for mitigating the urban heat.


2020 ◽  
Vol 20 (20) ◽  
pp. 11655-11681 ◽  
Author(s):  
Peter Huszar ◽  
Jan Karlický ◽  
Jana Ďoubalová ◽  
Tereza Nováková ◽  
Kateřina Šindelářová ◽  
...  

Abstract. This paper deals with the urban land-surface impact (i.e., the urban canopy meteorological forcing; UCMF) on extreme air pollution for selected central European cities for present-day climate conditions (2015–2016) using three regional climate-chemistry models: the regional climate models RegCM and WRF-Chem (its meteorological part), the chemistry transport model CAMx coupled to either RegCM and WRF and the “chemical” component of WRF-Chem. Most of the studies dealing with the urban canopy meteorological forcing on air pollution focused on change in average conditions or only on a selected winter and/or summer air pollution episode. Here we extend these studies by focusing on long-term extreme air pollution levels by looking at not only the change in average values, but also their high (and low) percentile values, and we combine the analysis with investigating selected high-pollution episodes too. As extreme air pollution is often linked to extreme values of meteorological variables (e.g., low planetary boundary layer height, low winds, high temperatures), the urbanization-induced extreme meteorological modifications will be analyzed too. The validation of model results show reasonable model performance for regional-scale temperature and precipitation. Ozone is overestimated by about 10–20 µg m−3 (50 %–100 %); on the other hand, extreme summertime ozone values are underestimated by all models. Modeled nitrogen dioxide (NO2) concentrations are well correlated with observations, but results are marked by a systematic underestimation up to 20 µg m−3 (−50 %). PM2.5 (particles with diameter ≤2.5 µm) are systematically underestimated in most of the models by around 5 µg m−3 (50 %–70 %). Our results show that the impact on extreme values of meteorological variables can be substantially different from that of the impact on average ones: low (5th percentile) temperature in winter responds to UCMF much more than average values, while in summer, 95th percentiles increase more than averages. The impact on boundary layer height (PBLH), i.e., its increase is stronger for thicker PBLs and wind speed, is reduced much more for strong winds compared to average ones. The modeled changes in ozone (O3), NO2 and PM2.5 show the expected pattern, i.e., increase in average 8 h O3 up to 2–3 ppbv, decrease in daily average NO2 by around 2–4 ppbv and decrease in daily average PM2.5 by around −2 µg m−3. Regarding the impact on extreme (95th percentile) values of these pollutants, the impact on ozone at the high end of the distribution is rather similar to the impact on average 8 h values. A different picture is obtained however for extreme values of NO2 and PM2.5. The impact on the 95th percentile values is almost 2 times larger than the impact on the daily averages for both pollutants. The simulated impact on extreme values further well corresponds to the UCMF impact simulated for the selected high-pollution episodes. Our results bring light to the principal question: whether extreme air quality is modified by urban land surface with a different magnitude compared to the impact on average air pollution. We showed that this is indeed true for NO2 and PM2.5, while in the case of ozone, our results did not show substantial differences between the impact on mean and extreme values.


2007 ◽  
Vol 8 (1) ◽  
pp. 68-87 ◽  
Author(s):  
Margaret A. LeMone ◽  
Fei Chen ◽  
Joseph G. Alfieri ◽  
Mukul Tewari ◽  
Bart Geerts ◽  
...  

Abstract Analyses of daytime fair-weather aircraft and surface-flux tower data from the May–June 2002 International H2O Project (IHOP_2002) and the April–May 1997 Cooperative Atmosphere Surface Exchange Study (CASES-97) are used to document the role of vegetation, soil moisture, and terrain in determining the horizontal variability of latent heat LE and sensible heat H along a 46-km flight track in southeast Kansas. Combining the two field experiments clearly reveals the strong influence of vegetation cover, with H maxima over sparse/dormant vegetation, and H minima over green vegetation; and, to a lesser extent, LE maxima over green vegetation, and LE minima over sparse/dormant vegetation. If the small number of cases is producing the correct trend, other effects of vegetation and the impact of soil moisture emerge through examining the slope ΔxyLE/ΔxyH for the best-fit straight line for plots of time-averaged LE as a function of time-averaged H over the area. Based on the surface energy balance, H + LE = Rnet − Gsfc, where Rnet is the net radiation and Gsfc is the flux into the soil; Rnet − Gsfc ∼ constant over the area implies an approximately −1 slope. Right after rainfall, H and LE vary too little horizontally to define a slope. After sufficient drying to produce enough horizontal variation to define a slope, a steep (∼−2) slope emerges. The slope becomes shallower and better defined with time as H and LE horizontal variability increases. Similarly, the slope becomes more negative with moister soils. In addition, the slope can change with time of day due to phase differences in H and LE. These trends are based on land surface model (LSM) runs and observations collected under nearly clear skies; the vegetation is unstressed for the days examined. LSM runs suggest terrain may also play a role, but observational support is weak.


Sign in / Sign up

Export Citation Format

Share Document