scholarly journals Space-borne observations link the tropical Atlantic ozone maximum and paradox to lightning

2003 ◽  
Vol 3 (6) ◽  
pp. 5725-5754 ◽  
Author(s):  
G. S. Jenkins ◽  
J.-H. Ryu

Abstract. The causes of high tropospheric column ozone values over the Tropical Atlantic Ocean during September, October, and November (SON) are investigated by examining lightning during 1998–2001. The cause for high tropospheric column ozone in the hemisphere opposite of biomass burning (tropical ozone paradox) is also examined. Our results show that lightning is central to high tropospheric column ozone during SON and responsible for the tropical ozone paradox during December, January, and February (DJF) and June, July and August (JJA). During SON large numbers of flashes are observed in South America, Central and West Africa enriching the tropospheric column ozone over the Tropical Atlantic Ocean. During JJA the largest numbers of lightning flashes are observed in West Africa, enriching tropospheric column ozone to the north of 5° S in the absence biomass burning. During DJF, lightning is concentrated in South America and Central Africa enriching tropospheric column ozone south of the Equator in the absence of biomass burning.

2004 ◽  
Vol 4 (2) ◽  
pp. 361-375 ◽  
Author(s):  
G. S. Jenkins ◽  
J.-H. Ryu

Abstract. The potential enhancement of tropospheric column ozone values over the Tropical Atlantic Ocean on a seasonal basis by lightning is investigated using satellite derived ozone data, TRMM lightning data, ozonesonde data and NCEP reanalysis during 1998-2001. Our results show that the number of lightning flashes in Africa and South America reach a maximum during September, October and November (SON). The spatial patterns of winds in combination with lightning from West Africa, Central Africa and South America is likely responsible for enriching middle/upper troposphere ozone over the Tropical South Atlantic during SON. Moreover, lightning flashes are high in the hemisphere opposite to biomass burning during December, January, and February (DJF) and June, July and August (JJA). This pattern leads to an enrichment of ozone in the middle/upper troposphere in the Southern Hemisphere Tropics during DJF and the Northern Hemisphere Tropics during JJA. During JJA the largest numbers of lightning flashes are observed in West Africa, enriching tropospheric column ozone to the north of 5S in the absence of biomass burning. During DJF, lightning is concentrated in South America and Central Africa enriching tropospheric column ozone south of the Equator in the absence of biomass burning.


2009 ◽  
Vol 9 (4) ◽  
pp. 17385-17427 ◽  
Author(s):  
E. Real ◽  
E. Orlandi ◽  
K. S. Law ◽  
F. Fierli ◽  
D. Josset ◽  
...  

Abstract. Pollutant plumes with enhanced levels of trace gases and aerosols were observed over the southern coast of West Africa during August 2006 as part of the AMMA wet season field campaign. Plumes were observed both in the mid and upper troposphere. In this study we examined both the origin of these pollutant plumes and their potential to produce O3 downwind over the Atlantic Ocean. Runs using the BOLAM mesoscale model including biomass burning CO tracers were used to confirm an origin from central African fires. The plumes in the mid troposphere had significantly higher pollutant concentrations due to the fact that transport occurred from a region nearer or even over the fire region. In contrast, plumes transported into the upper troposphere over West Africa had been transported to the north-east of the fire region before being uplifted. Modelled tracer results showed that pollutants resided for between 9 and 12 days over Central Africa before being transported for 4 days, in the case of the mid-troposphere plume and 2 days in the case of the upper tropospheric plume to the measurement location over the southern part of West Africa. Around 35% of the biomass burning tracer was transported into the upper troposphere compared to that remaining in the mid troposphere. Runs using a photochemical trajectory model, CiTTyCAT, were used to estimate the net photochemical O3 production potential of these plumes. The mid tropospheric plume was still very photochemically active (up to 7 ppbv/day) especially during the first few days of transport westward over the Atlantic Ocean. The upper tropospheric plume was also still photochemically active, although at a slower rate (1–2 ppbv/day). Trajectories show this plume being recirculated around an upper tropospheric anticyclone back towards the African continent (around 20° S). The potential of theses plumes to produce O3 supports the hypothesis that biomass burning pollutants are contributing to the observed O3 maxima over the southern Atlantic at this time of year.


2019 ◽  
Vol 116 (33) ◽  
pp. 16216-16221 ◽  
Author(s):  
Anne E. Barkley ◽  
Joseph M. Prospero ◽  
Natalie Mahowald ◽  
Douglas S. Hamilton ◽  
Kimberly J. Popendorf ◽  
...  

The deposition of phosphorus (P) from African dust is believed to play an important role in bolstering primary productivity in the Amazon Basin and Tropical Atlantic Ocean (TAO), leading to sequestration of carbon dioxide. However, there are few measurements of African dust in South America that can robustly test this hypothesis and even fewer measurements of soluble P, which is readily available for stimulating primary production in the ocean. To test this hypothesis, we measured total and soluble P in long-range transported aerosols collected in Cayenne, French Guiana, a TAO coastal site located at the northeastern edge of the Amazon. Our measurements confirm that in boreal spring when African dust transport is greatest, dust supplies the majority of P, of which 5% is soluble. In boreal fall, when dust transport is at an annual minimum, we measured unexpectedly high concentrations of soluble P, which we show is associated with the transport of biomass burning (BB) from southern Africa. Integrating our results into a chemical transport model, we show that African BB supplies up to half of the P deposited annually to the Amazon from transported African aerosol. This observational study links P-rich BB aerosols from Africa to enhanced P deposition in the Amazon. Contrary to current thought, we also show that African BB is a more important source of soluble P than dust to the TAO and oceans in the Southern Hemisphere and may be more important for marine productivity, particularly in boreal summer and fall.


2004 ◽  
Vol 4 (2) ◽  
pp. 449-469 ◽  
Author(s):  
G. S. Jenkins ◽  
J.-H. Ryu

Abstract. During the Northern hemisphere winter season, biomass burning is widespread in West Africa, yet the total tropospheric column ozone values (<30DU) over much of the Tropical Atlantic Ocean (15°N-5°S) are relatively low. At the same time, the tropospheric column ozone values in the Southern Tropical Atlantic are higher than those in the Northern Hemisphere (ozone paradox). We examine the causes for low tropospheric column ozone values by considering the horizontal and vertical transport of biomass fire emissions in West Africa during November through March, using observed data which characterizes fires, aerosols, horizontal winds, precipitation, lightning and outgoing longwave radiation. We have found that easterly winds prevail in the lower troposphere but transition to westerly winds at pressure levels lower than 500hPa. A persistent anticyclone over West Africa at 700hPa is responsible for strong easterly winds, which causes a net outflow of ozone/ozone precursors from biomass burning in West Africa across the Atlantic Ocean towards South America. The lowest outgoing longwave radiation (OLR) and highest precipitation rates are generally found over the central Atlantic, some distance downstream of fires in West Africa making the vertical transport of ozone and ozone precursors less likely and ozone destruction more likely. However, lightning over land areas in Central Africa and South America can lead to enhanced ozone levels in the upper troposphere especially over the Southern tropical Atlantic during the Northern Hemisphere winter season.


2007 ◽  
Vol 135 (5) ◽  
pp. 1786-1806 ◽  
Author(s):  
Zeng-Zhen Hu ◽  
Bohua Huang

Abstract This work investigates the predictive skill and most predictable pattern in the NCEP Climate Forecast System (CFS) in the tropical Atlantic Ocean. The skill is measured by the sea surface temperature (SST) anomaly correlation between the predictions and the corresponding analyses, and the most predictable patterns are isolated by an empirical orthogonal function analysis with a maximized signal-to-noise ratio. On average, for predictions with initial conditions (ICs) of all months, the predictability of SST is higher in the west than in the east. The highest skill is near the tropical Brazilian coast and in the Caribbean Sea, and the lowest skill occurs in the eastern coast. Seasonally, the skill is higher for predictions with ICs in summer or autumn and lower for those with ICs in spring. The CFS poorly predicts the meridional gradient in the tropical Atlantic Ocean. The superiority of the CFS predictions to the persistence forecasts depends on IC month, region, and lead time. The CFS prediction is generally better than the corresponding persistence forecast when the lead time is longer than 3 months. The most predictable pattern of SST in March has the same sign in almost the whole tropical Atlantic. The corresponding pattern in March is dominated by the same sign for geopotential height at 200 hPa in most of the domain and by significant opposite variation for precipitation between the northwestern tropical North Atlantic and the regions from tropical South America to the southwestern tropical North Atlantic. These predictable signals mainly result from the influence of the El Niño–Southern Oscillation (ENSO). The significant values in the most predictable pattern of precipitation in the regions from tropical South America to the southwestern tropical North Atlantic in March are associated with excessive divergence (convergence) at low (high) levels over these regions in the CFS. For the CFS, the predictive skill in the tropical Atlantic Ocean is largely determined by its ability to predict ENSO. This is due to the strong connection between ENSO and the most predictable patterns in the tropical Atlantic Ocean in the model. The higher predictive skill of tropical North Atlantic SST is consistent with the ability of the CFS to predict ENSO on interseasonal time scales, particularly for the ICs in warm months from March to October. In the southeastern ocean, the systematic warm bias is a crucial factor leading to the low skill in this region.


Ocean Science ◽  
2012 ◽  
Vol 8 (5) ◽  
pp. 797-811
Author(s):  
N. Freychet ◽  
E. Cosme ◽  
P. Brasseur ◽  
J.-M. Brankart ◽  
E. Kpemlie

Abstract. Most of oceanographic operational centers use three-dimensional data assimilation schemes to produce reanalyses. We investigate here the benefits of a smoother, i.e. a four-dimensional formulation of statistical assimilation. A square-root sequential smoother is implemented with a tropical Atlantic Ocean circulation model. A simple twin experiment is performed to investigate its benefits, compared to its corresponding filter. Despite model's non-linearities and the various approximations used for its implementation, the smoother leads to a better estimation of the ocean state, both on statistical (i.e. mean error level) and dynamical points of view, as expected from linear theory. Smoothed states are more in phase with the dynamics of the reference state, an aspect that is nicely illustrated with the chaotic dynamics of the North Brazil Current rings. We also show that the smoother efficiency is strongly related to the filter configuration. One of the main obstacles to implement the smoother is then to accurately estimate the error covariances of the filter. Considering this, benefits of the smoother are also investigated with a configuration close to situations that can be managed by operational center systems, where covariances matrices are fixed (optimal interpolation). We define here a simplified smoother scheme, called half-fixed basis smoother, that could be implemented with current reanalysis schemes. Its main assumption is to neglect the propagation of the error covariances matrix, what leads to strongly reduce the cost of assimilation. Results illustrate the ability of this smoother to provide a solution more consistent with the dynamics, compared to the filter. The smoother is also able to produce analyses independently of the observation frequency, so the smoothed solution appears more continuous in time, especially in case of a low frenquency observation network.


Tellus B ◽  
2000 ◽  
Vol 52 (2) ◽  
pp. 620-635 ◽  
Author(s):  
Thierry Elias ◽  
Claude Devaux ◽  
Philippe Goloub ◽  
Maurice Herman

2020 ◽  
Vol 12 (5) ◽  
pp. 757
Author(s):  
Hélène Fréville ◽  
Malik Chami ◽  
Marc Mallet

The time series of total, fine and coarse POLAC/PARASOL aerosol optical depth (AOD) satellite products (2005–2013) processed by the POLAC algorithm are examined to investigate the transport of aerosols over the North Tropical Atlantic Ocean, a region that is characterized by significant dust aerosols events. First, the comparison of satellite observations with ground-based measurements acquired by AERONET ground-based measurements shows a satisfactory consistency for both total AOD and coarse mode AOD (i.e., correlation coefficients of 0.75 and bias ranging from −0.03 to 0.03), thus confirming the robustness and performance of POLAC/PARASOL data to investigate the spatio-temporal variability of the aerosols over the study area. Regarding fine mode aerosol, POLAC/PARASOL data present a lower performance with correlation coefficient ranging from 0.37 to 0.73. Second, the analysis of POLAC/PARASOL aerosol climatology reveals a high contribution of the coarse mode of aerosols ( AOD c between 0.1 and 0.4) at long distance from the African sources, confirming previous studies related to dust transport. The POLAC/PARASOL data were also compared with aerosol data obtained over the North Tropical Atlantic Ocean from MACC and MERRA-2 reanalyses. It is observed that the total AOD is underestimated in both reanalysis with a negative bias reaching −0.2. In summary, our results thus suggest that satellite POLAC/PARASOL observations of fine and coarse modes of aerosols could provide additional constraints useful to improve the quantification of the dust direct radiative forcing on a regional scale but also the biogeochemical processes such as nutrient supply to the surface waters.


Sign in / Sign up

Export Citation Format

Share Document