scholarly journals Inverse modelling of national and European CH<sub>4</sub> emissions using the atmospheric zoom model TM5

2005 ◽  
Vol 5 (1) ◽  
pp. 1007-1066 ◽  
Author(s):  
P. Bergamaschi ◽  
M. Krol ◽  
F. Dentener ◽  
A. Vermeulen ◽  
F. Meinhardt ◽  
...  

Abstract. A synthesis inversion based on the atmospheric zoom model TM5 is used to derive top-down estimates of CH4 emissions from individual European countries for the year 2001. We employ a model zoom over Europe with 1°&amp;times1° resolution that is two-way nested into the global model domain (with resolution of 6°×4°). This approach ensures consistent boundary conditions for the zoom domain and thus European top-down estimates consistent with global CH4 observations. The TM5 model, driven by ECMWF analyses, simulates synoptic scale events at most European and global sites fairly well, and the use of high-frequency observations allows exploiting the information content of individual synoptic events. A detailed source attribution is presented for a comprehensive set of 56 monitoring sites, assigning the atmospheric signal to the emissions of individual European countries and larger global regions. The available observational data put significant constraints on emissions from different regions. Within Europe, in particular several Western European countries are well constrained. The inversion results suggest up to 50–90% higher anthropogenic CH4 emissions in 2001 for Germany, France and UK compared to reported UNFCCC values, but the derived EU-15 totals are relatively close to UNFCCC values (within 10–30%). The derived top-down estimate for Finland is distinctly smaller than the a priori estimate, suggesting much smaller CH4 emissions from Finnish wetlands than derived from the bottom-up inventory.

2005 ◽  
Vol 5 (9) ◽  
pp. 2431-2460 ◽  
Author(s):  
P. Bergamaschi ◽  
M. Krol ◽  
F. Dentener ◽  
A. Vermeulen ◽  
F. Meinhardt ◽  
...  

Abstract. A synthesis inversion based on the atmospheric zoom model TM5 is used to derive top-down estimates of CH4 emissions from individual European countries for the year 2001. We employ a model zoom over Europe with 1° × 1° resolution that is two-way nested into the global model domain (with resolution of 6° × 4°. This approach ensures consistent boundary conditions for the zoom domain and thus European top-down estimates consistent with global CH4 observations. The TM5 model, driven by ECMWF analyses, simulates synoptic scale events at most European and global sites fairly well, and the use of high-frequency observations allows exploiting the information content of individual synoptic events. A detailed source attribution is presented for a comprehensive set of 56 monitoring sites, assigning the atmospheric signal to the emissions of individual European countries and larger global regions. The available observational data put significant constraints on emissions from different regions. Within Europe, in particular several Western European countries are well constrained. The inversion results suggest up to 50-90% higher anthropogenic CH4 emissions in 2001 for Germany, France and UK compared to reported UNFCCC values (EEA, 2003). A recent revision of the German inventory, however, resulted in an increase of reported CH4 emissions by 68.5% (EEA, 2004), being now in very good agreement with our top-down estimate. The top-down estimate for Finland is distinctly smaller than the a priori estimate, suggesting much smaller CH4 emissions from Finnish wetlands than derived from the bottom-up inventory. The EU-15 totals are relatively close to UNFCCC values (within 4-30%) and appear very robust for different inversion scenarios.


Author(s):  
Л.М. Энеева

В работе исследуется обыкновенное дифференциальное уравнение дробного порядка, содержащее композицию дробных производных с различными началами, с переменным потенциалом. Рассматриваемое уравнение выступает модельным уравнением движения во фрактальной среде. Для исследуемого уравнения доказана априорная оценка решения смешанной двухточечной краевой задачи. We consider an ordinary differential equation of fractional order with the composition of leftand right-sided fractional derivatives, and with variable potential. The considered equation is a model equation of motion in fractal media. We prove an a priori estimate for solutions of a mixed two-point boundary value problem for the equation under study.


2018 ◽  
Vol 64 (4) ◽  
pp. 591-602
Author(s):  
R D Aloev ◽  
M U Khudayberganov

We study the difference splitting scheme for the numerical calculation of stable solutions of a two-dimensional linear hyperbolic system with dissipative boundary conditions in the case of constant coefficients with lower terms. A discrete analog of the Lyapunov function is constructed and an a priori estimate is obtained for it. The obtained a priori estimate allows us to assert the exponential stability of the numerical solution.


1999 ◽  
Vol 22 (3) ◽  
pp. 511-519 ◽  
Author(s):  
Said Mesloub ◽  
Abdelfatah Bouziani

In this paper, we study a mixed problem with a nonlocal condition for a class of second order singular hyperbolic equations. We prove the existence and uniqueness of a strong solution. The proof is based on a priori estimate and on the density of the range of the operator generated by the studied problem.


Sign in / Sign up

Export Citation Format

Share Document