scholarly journals Seasonal dependence of peroxy radical concentrations at a northern hemisphere marine boundary layer site during summer and winter: evidence for photochemical activity in winter

2006 ◽  
Vol 6 (4) ◽  
pp. 7235-7284
Author(s):  
Z. L. Fleming ◽  
P. S. Monks ◽  
A. R. Rickard ◽  
B. J. Bandy ◽  
N. Brough ◽  
...  

Abstract. Peroxy radicals (HO2+ΣRO2) were measured at the Weybourne Atmospheric Observatory (52° N, 1° E), Norfolk using a PEroxy Radical Chemical Amplifier (PERCA) during the winter and summer of 2002. The peroxy radical diurnal cycles showed a marked difference between the winter and summer campaigns with maximum concentrations of 12 pptv at midday in the summer and maximum concentrations as high as 30 pptv (10 min averages) in winter at night. The corresponding nighttime peroxy radical concentrations were not as high in summer (3 pptv). The peroxy radical concentration shows a distinct anti-correlation with increasing NOx during the daylight hours. At night, peroxy radicals increase with increasing NOx indicative of the role of NO3 chemistry. The average diurnal cycles for net ozone production, N(O3) show a large variability in ozone production, P(O3), and a large ozone loss, L(O3) in summer relative to winter. For a daylight average, net ozone production in summer than winter (1.51±0.5 ppbv h−1 and 1.11±0.47 ppbv h−1 respectively) but summer shows more variability of (meteorological) conditions than winter. The variability in NO concentration has a much larger effect on N(O3) than the peroxy radical concentrations. Photostationary state (PSS) calculations show an NO2 lifetime of 5 min in summer and 21 min in the winter, implying that steady-state NO-NO2 ratios are not always attained during the winter months. The results show an active peroxy radical chemistry at night and the ability of winter to make oxidant. The net effect of this with respect to production of ozone in winter is unclear owing to the breakdown in the photostationary state.

2006 ◽  
Vol 6 (12) ◽  
pp. 5415-5433 ◽  
Author(s):  
Z. L. Fleming ◽  
P. S. Monks ◽  
A. R. Rickard ◽  
B. J. Bandy ◽  
N. Brough ◽  
...  

Abstract. Peroxy radicals (HO2+Σ RO2) were measured at the Weybourne Atmospheric Observatory (52° N, 1° E), Norfolk using a PEroxy Radical Chemical Amplifier (PERCA) during the winter and summer of 2002. The peroxy radical diurnal cycles showed a marked difference between the winter and summer campaigns with maximum concentrations of 12 pptv at midday in the summer and maximum concentrations as high as 30 pptv (10 min averages) in winter at night. The corresponding nighttime peroxy radical concentrations were not as high in summer (3 pptv). The peroxy radical concentration shows a distinct anti-correlation with increasing NOx during the daylight hours. At night, peroxy radicals increase with increasing NOx indicative of the role of NO3 chemistry. The average diurnal cycles for net ozone production, N(O3) show a large variability in ozone production, P(O3), and a large ozone loss, L(O3) in summer relative to winter. For a daylight average, net ozone production in summer was higher than winter (1.51±0.5 ppbv h−1 and 1.11±0.47 ppbv h−1, respectively). The variability in NO concentration has a much larger effect on N(O3) than the peroxy radical concentrations. Photostationary state (PSS) calculations show an NO2 lifetime of 5 min in summer and 21 minutes in the winter, implying that steady-state NO-NO2 ratios are not always attained during the winter months. The results show an active peroxy radical chemistry at night and that significant oxidant levels are sustained in winter. The net effect of this with respect to production of ozone in winter is unclear owing to the breakdown in the photostationary state.


2006 ◽  
Vol 6 (8) ◽  
pp. 2193-2214 ◽  
Author(s):  
Z. L. Fleming ◽  
P. S. Monks ◽  
A. R. Rickard ◽  
D. E. Heard ◽  
W. J. Bloss ◽  
...  

Abstract. Peroxy radical (HO2+ΣRO2) measurements, using the PEroxy Radical Chemical Amplification (PERCA) technique at the North Atlantic Marine Boundary Layer EXperiment (NAMBLEX) at Mace Head in summer 2002, are presented and put into the context of marine, boundary-layer chemistry. A suite of other chemical parameters (NO, NO2, NO3, CO, CH4, O3, VOCs, peroxides), photolysis frequencies and meteorological measurements, are used to present a detailed analysis of the role of peroxy radicals in tropospheric oxidation cycles and ozone formation. Under the range of conditions encountered the peroxy radical daily maxima varied from 10 to 40 pptv. The diurnal cycles showed an asymmetric shape typically shifted to the afternoon. Using a box model based on the master chemical mechanism the average model measurement agreement was 2.5 across the campaign. The addition of halogen oxides to the model increases the level of model/measurement agreement, apparently by respeciation of HOx. A good correlation exists between j(HCHO).[HCHO] and the peroxy radicals indicative of the importance of HCHO in the remote atmosphere as a HOx source, particularly in the afternoon. The peroxy radicals showed a strong dependence on [NO2] with a break point at 0.1 ppbv, where the radicals increased concomitantly with the reactive VOC loading, this is a lower value than seen at representative urban campaigns. The HO2/(HO2+ΣRO2) ratios are dependent on [NOx] ranging between 0.2 and 0.6, with the ratio increasing linearly with NOx. Significant night-time levels of peroxy radicals were measured up to 25 pptv. The contribution of ozone-alkenes and NO3-alkene chemistry to night-time peroxy radical production was shown to be on average 59 and 41%. The campaign mean net ozone production rate was 0.11±0.3 ppbv h-1. The ozone production rate was strongly dependent on [NO] having linear sensitivity (dln(P(O3))/dln(NO)=1.0). The results imply that the N(O3) (the in-situ net photochemical rate of ozone production/destruction) will be strongly sensitive in the marine boundary layer to small changes in [NO] which has ramifications for changing NOx loadings in the European continental boundary layer.


2005 ◽  
Vol 5 (6) ◽  
pp. 12313-12371 ◽  
Author(s):  
Z. L. Fleming ◽  
P. S. Monks ◽  
A. R. Rickard ◽  
D. E. Heard ◽  
W. J. Bloss ◽  
...  

Abstract. Peroxy radical (HO2+ΣRO2) measurements, using the PEroxy Radical Chemical Amplification (PERCA) technique at the North Atlantic Marine Boundary Layer EXperiment (NAMBLEX) at Mace Head in summer 2002, are presented and put into the context of marine, boundary-layer chemistry. A suite of other chemical parameters (NO, NO2, NO3, CO, CH4, O3, VOCs, peroxides), photolysis frequencies and meteorological measurements, are used to present a detailed analysis of the role of peroxy radicals in tropospheric oxidation cycles and ozone formation. Under the range of conditions encountered the peroxy radical daily maxima varied from 10 to 40 pptv. The diurnal cycles showed an asymmetric shape typically shifted to the afternoon. Using a box model based on the master chemical mechanism the average model measurement agreement was 2.5 across the campaign. The addition of halogen oxides to the model increases the level of model/measurement agreement, apparently by respeciation of HOx. A good correlation exists between j(HCHO).[HCHO] and the peroxy radicals indicative of the importance of HCHO in the remote atmosphere as a HOx source, particularly in the afternoon. The peroxy radicals showed a strong dependence on [NOx] with a break point at 0.1 ppbv, where the radicals increased concomitantly with the reactive VOC loading, this is a lower value than seen at representative urban campaigns. The HO2/(HO2+ΣRO2) ratios are dependent on [NOx] ranging between 0.2 and 0.6, with the ratio increasing linearly with NOx. Significant night-time levels of peroxy radicals were measured up to 25 pptv. The contribution of ozone-alkenes and NO3-alkene chemistry to night-time peroxy radical production was shown to be on average 59 and 41%. The campaign mean net ozone production rate was 0.11±0.3 ppbv h−1. The ozone production rate was strongly dependent on [NO] having linear sensitivity (dln(P(O3))/dln(NO)=1.0). The results imply that the N(O3) (the in-situ net photochemical rate of ozone production/destruction) will be strongly sensitive in the marine boundary layer to small changes in [NO] which has ramifications for changing NOx loadings in the European continental boundary layer.


2019 ◽  
Vol 19 (5) ◽  
pp. 2845-2860 ◽  
Author(s):  
Daniel C. Anderson ◽  
Jessica Pavelec ◽  
Conner Daube ◽  
Scott C. Herndon ◽  
Walter B. Knighton ◽  
...  

Abstract. Observations of total peroxy radical concentrations ([XO2] ≡ [RO2] + [HO2]) made by the Ethane CHemical AMPlifier (ECHAMP) and concomitant observations of additional trace gases made on board the Aerodyne Mobile Laboratory (AML) during May 2017 were used to characterize ozone production at three sites in the San Antonio, Texas, region. Median daytime [O3] was 48 ppbv at the site downwind of central San Antonio. Higher concentrations of NO and XO2 at the downwind site also led to median daytime ozone production rates (P(O3)) of 4.2 ppbv h−1, a factor of 2 higher than at the two upwind sites. The 95th percentile of P(O3) at the upwind site was 15.1 ppbv h−1, significantly lower than values observed in Houston. In situ observations, as well as satellite retrievals of HCHO and NO2, suggest that the region was predominantly NOx-limited. Only approximately 20 % of observations were in the VOC-limited regime, predominantly before 11:00 EST, when ozone production was low. Biogenic volatile organic compounds (VOCs) comprised 55 % of total OH reactivity at the downwind site, with alkanes and non-biogenic alkenes responsible for less than 10 % of total OH reactivity in the afternoon, when ozone production was highest. To control ozone formation rates at the three study sites effectively, policy efforts should be directed at reducing NOx emissions. Observations in the urban center of San Antonio are needed to determine whether this policy is true for the entire region.


2009 ◽  
Vol 9 (9) ◽  
pp. 3075-3093 ◽  
Author(s):  
R. Sommariva ◽  
H. D. Osthoff ◽  
S. S. Brown ◽  
T. S. Bates ◽  
T. Baynard ◽  
...  

Abstract. This paper describes a modelling study of several HOx and NOx species (OH, HO2, organic peroxy radicals, NO3 and N2O5) in the marine boundary layer. A model based upon the Master Chemical Mechanism (MCM) was constrained to observations of chemical and physical parameters made onboard the NOAA ship R/V Brown as part of the New England Air Quality Study (NEAQS) in the summer of 2004. The model was used to calculate [OH] and to determine the composition of the peroxy radical pool. Modelled [NO3] and [N2O5] were compared to in-situ measurements by Cavity Ring-Down Spectroscopy. The comparison showed that the model generally overestimated the measurements by 30–50%, on average. The model results were analyzed with respect to several chemical and physical parameters, including uptake of NO3 and N2O5 on fog droplets and on aerosol, dry deposition of NO3 and N2O5, gas-phase hydrolysis of N2O5 and reactions of NO3 with NMHCs and peroxy radicals. The results suggest that fog, when present, is an important sink for N2O5 via rapid heterogeneous uptake. The comparison between the model and the measurements were consistent with values of the heterogeneous uptake coefficient of N2O5 (γN2O5)>1×10−2, independent of aerosol composition in this marine environment. The analysis of the different loss processes of the nitrate radical showed the important role of the organic peroxy radicals, which accounted for a significant fraction (median: 15%) of NO3 gas-phase removal, particularly in the presence of high concentrations of dimethyl sulphide (DMS).


2020 ◽  
Author(s):  
Yangzhuoran Liu ◽  
Mariano Mertens ◽  
Maria Dolores Andrés Hernández ◽  
Midhun George ◽  
Vladyslav Nenakhov ◽  
...  

<p>Observations of tropospheric peroxy radicals are a key point for interpretation of the processing and transformation of polluted outflows from major populated centres (MPCs). A series of European MPCs are investigated by the project EMeRGe (Effect of Megacities on the transport and transformation of pollutants on the Regional and Global scales). With this objective two airborne campaigns using the research platform HALO (High Altitude and LOng range aircraft) were carried out over Europe in summer 2017 and over east Asia in the intermonsoon period in 2018. The Institute of Environmental Physics (IUP) in Bremen (Germany) participated in both EMeRGe campaigns with the airborne measurement of the total sum of peroxy radicals, RO<sub>2</sub><sup>*</sup>, by using  the home made PeRCEAS instrument based on the combination of the PERCA (peroxy radical chemical amplification)  and CRDS (cavity ring down spectroscopy) techniques. One of the main purposes of the campaigns was the investigation of the characteristics and chemical transformation of MPC outflows at the local and regional scales.</p><p>During the EMeRGe campaign in Europe, air masses of different photochemical activity were measured, where RO<sub>2</sub><sup>*</sup> mixing ratios up to 100pptv being observed. In the present study the RO<sub>2</sub><sup>* </sup>observations for six measurement flights of EMeRGe in Europe have been compared with RO<sub>2</sub> (here defined as the sum of HO<sub>2 </sub>+ CH<sub>3</sub>O<sub>2 </sub>+ ISOOH + CH<sub>3</sub>CO<sub>3 </sub>+ CH<sub>3</sub>COCH<sub>2</sub>O<sub>2</sub>) simulated by using the MECO(n) model.</p><p>MECO(n) (MESSy-fied ECHAM and COSMO models nested n times), is  a global/regional chemistry-climate model developed by the MESSy consortium, which couples on-line the global chemistry-climate model EMAC with the regional chemistry-climate model COSMO-CLM/MESSy. The same anthropogenic emission inventory (EDGAR 4.3.1) as well as the same solver for chemical kinetics, involving complex tropospheric and stratospheric chemistry, are applied in EMAC and COSMO-CLM/MESSy.</p><p>Overall, the agreement between the measurements and model is reasonable for RO<sub>2</sub><sup>* </sup>observations below 40 pptv. Events with higher mixing ratios seem not to be well reproduced by the model but underestimated. Further details on the modelling and the result of the comparison will be presented.</p>


2009 ◽  
Vol 9 (1) ◽  
pp. 1585-1619 ◽  
Author(s):  
M. D. Andrés-Hernández ◽  
D. Kartal ◽  
L. Reichert ◽  
J. P. Burrows ◽  
J. Meyer Arnek ◽  
...  

Abstract. Peroxy radical measurements made on board the DLR-Falcon research aircraft over West Africa within the African Monsoon Multidisciplinary Analysis (AMMA) campaign during the 2006 wet monsoon are presented in this study. The analysis of data focuses on the photochemical activity of air masses sampled during episodes of intense convection and biomass burning. Generally, the total sum of peroxy radical mixing ratios, measured in the outflow of convective clouds, are quite variable but occasionally are coupled with the NO variations indicating the coexistence, or simultaneously emission of NOx, with a potential radical precursor (i.e., formaldehyde, acetone or peroxides) which has likely been transported to higher atmospheric layers. Based on the measurements, significant O3 production rates up to 2 ppb/h in the MCS outflow are estimated by using a box model with simplified chemistry. Peroxy radicals having mixing ratios around 20–25 pptv and with peak values of up to 60–70 pptv are measured within biomass burning plumes, detected at the coast in Ghana. Calculations of back-trajectory densities confirm the origin of these air masses being a biomass burning region at southern latitudes and close to the Gulf of Guinea, according to satellite pictures. Measured peroxy radical concentrations agree reasonably with modelled estimations taking into account simple local chemistry. Moreover the vertical profiles taken at the aircraft base in Ouagadougou, Burkina Faso, indicate the common feature of having maximum concentrations between 2 and 4 km, in agreement with other literature values obtained under similar conditions.


2004 ◽  
Vol 4 (2) ◽  
pp. 2003-2036 ◽  
Author(s):  
K. Mannschreck ◽  
S. Gilge ◽  
C. Plass-Duelmer ◽  
W. Fricke ◽  
H. Berresheim

Abstract. Continuous measurements of reactive gases, radiation, and meteorological parameters are carried out at the Meteorological Observatory Hohenpeissenberg (MOHp) as part of the Global Atmosphere Watch (GAW) Program. NO, NO2, O3 and JNO2 data from a four year period (March 1999–December 2002) are evaluated for consistency with photochemical steady state (PSS, Φ=1) conditions. In average PSS was reached in 17%, 13%, 22% and 32% of all cases for the year 1999, 2000, 2001 and 2002, respectively. The extent of deviation from PSS reveals a strong dependence on wind direction at the station. Median values of Φ in the south sector are in the range of 2.5–5.7 and show a high variability. In contrast, values for the other directions show a relatively low variability around a median level of 2. These differences can be explained by local effects. It is shown that the height of the sample inlet line, its distance to the forest and the surrounding topography has a strong impact on both the absolute and relative deviations from PSS. Global irradiance and thus, photolysis of NO2 is reduced within the dense forest. Since the reaction of NO with O3 is still proceeding under these conditions, increased NO2/NO ratios are produced locally in air which is transported through the forest and advected to the MOHp site. Estimates of the peroxy radical concentration (RO2) inferred from PSS are compared with peroxy radical measurements made at the site in June 2000 in a three week campaign. The PSS derived RO2 levels were higher than corresponding measured levels by at least a factor of 2–3. This analysis was made for a wind sector with minimal local effects on PSS. Thus the corresponding Φ median of 2 can be regarded as an upper limit for a deviation from PSS due to chemical reactions, i.e. by peroxy radicals and possible other oxidants converting additional NO to NO2.


2008 ◽  
Vol 8 (1) ◽  
pp. 2275-2309 ◽  
Author(s):  
Z.-H. Shon ◽  
S. Madronich ◽  
S.-K. Song ◽  
F. M. Flocke ◽  
D. J. Knapp ◽  
...  

Abstract. The NO-NO2 system was analyzed in different chemical regimes/air masses based on observations of reactive nitrogen species and peroxy radicals made during the intensive field campaign MIRAGE-Mex (4 to 29 March 2006). In general, NO2/NO ratios, which can be used as an indicator to test current understanding of tropospheric chemistry mechanism, are near photostationary state. The air masses were categorized into 5 groups: boundary layer (labeled as "BL"), free troposphere (continental, "FTCO" and marine, "FTMA"), biomass burning ("BB"), and Tula industrial complex ("TIC"). The time- and air mass-dependent NO2/NO ratios ranged from 2.35 (TIC) to 5.18 (BB), while the NOx/NOy ratios varied from 0.17 (FTCO) to 0.54 (BL). The ozone production efficiency for the 5 air mass categories ranged from 5.0 (TIC) to 10.2 (BL), indicating photochemically young and reactive air masses.


2015 ◽  
Vol 15 (8) ◽  
pp. 4297-4316 ◽  
Author(s):  
A. P. Teng ◽  
J. D. Crounse ◽  
L. Lee ◽  
J. M. St. Clair ◽  
R. C. Cohen ◽  
...  

Abstract. Alkenes are oxidized rapidly in the atmosphere by addition of OH and subsequently O2 leading to the formation of β-hydroxy peroxy radicals. These peroxy radicals react with NO to form β-hydroxy nitrates with a branching ratio α. We quantify α for C2–C8 alkenes at 295 K ± 3 and 993 hPa. The branching ratio can be expressed as α = (0.045 ± 0.016) × N − (0.11 ± 0.05) where N is the number of heavy atoms (excluding the peroxy moiety), and listed errors are 2σ. These branching ratios are larger than previously reported and are similar to those for peroxy radicals formed from H abstraction from alkanes. We find the isomer distributions of β-hydroxy nitrates formed under NO-dominated peroxy radical chemistry to be different than the isomer distribution of hydroxy hydroperoxides produced under HO2-dominated peroxy radical chemistry. Assuming unity yield for the hydroperoxides implies that the branching ratio to form β-hydroxy nitrates increases with substitution of RO2. Deuterium substitution enhances the branching ratio to form hydroxy nitrates in both propene and isoprene by a factor of ~ 1.5. The role of alkene chemistry in the Houston region is re-evaluated using the RONO2 branching ratios reported here. Small alkenes are found to play a significant role in present-day oxidant formation more than a decade (2013) after the 2000 Texas Air Quality Study identified these compounds as major contributors to photochemical smog in Houston.


Sign in / Sign up

Export Citation Format

Share Document