scholarly journals Characteristics of the NO-NO<sub>2</sub>-O<sub>3</sub> system in different chemical regimes during the MIRAGE-Mex field campaign

2008 ◽  
Vol 8 (1) ◽  
pp. 2275-2309 ◽  
Author(s):  
Z.-H. Shon ◽  
S. Madronich ◽  
S.-K. Song ◽  
F. M. Flocke ◽  
D. J. Knapp ◽  
...  

Abstract. The NO-NO2 system was analyzed in different chemical regimes/air masses based on observations of reactive nitrogen species and peroxy radicals made during the intensive field campaign MIRAGE-Mex (4 to 29 March 2006). In general, NO2/NO ratios, which can be used as an indicator to test current understanding of tropospheric chemistry mechanism, are near photostationary state. The air masses were categorized into 5 groups: boundary layer (labeled as "BL"), free troposphere (continental, "FTCO" and marine, "FTMA"), biomass burning ("BB"), and Tula industrial complex ("TIC"). The time- and air mass-dependent NO2/NO ratios ranged from 2.35 (TIC) to 5.18 (BB), while the NOx/NOy ratios varied from 0.17 (FTCO) to 0.54 (BL). The ozone production efficiency for the 5 air mass categories ranged from 5.0 (TIC) to 10.2 (BL), indicating photochemically young and reactive air masses.

2008 ◽  
Vol 8 (23) ◽  
pp. 7153-7164 ◽  
Author(s):  
Z.-H. Shon ◽  
S. Madronich ◽  
S.-K. Song ◽  
F. M. Flocke ◽  
D. J. Knapp ◽  
...  

Abstract. The NO-NO2 system was analyzed in different chemical regimes/air masses based on observations of reactive nitrogen species and peroxy radicals made during the intensive field campaign MIRAGE-Mex (4 to 29 March 2006). The air masses were categorized into 5 groups based on combinations of macroscopic observations, geographical location, meteorological parameters, models, and observations of trace gases: boundary layer (labeled as "BL"), biomass burning ("BB"), free troposphere (continental, "FTCO" and marine, "FTMA"), and Tula industrial complex ("TIC"). In general, NO2/NO ratios in different air masses are near photostationary state. Analysis of this ratio can be useful for testing current understanding of tropospheric chemistry. The ozone production efficiency (OPE) for the 5 air mass categories ranged from 4.5 (TIC) to 8.5 (FTMA), consistent with photochemical aging of air masses exiting the Mexico City Metropolitan Area.


2012 ◽  
Vol 12 (5) ◽  
pp. 2567-2585 ◽  
Author(s):  
Y. Kanaya ◽  
A. Hofzumahaus ◽  
H.-P. Dorn ◽  
T. Brauers ◽  
H. Fuchs ◽  
...  

Abstract. A photochemical box model constrained by ancillary observations was used to simulate OH and HO2 concentrations for three days of ambient observations during the HOxComp field campaign held in Jülich, Germany in July 2005. Daytime OH levels observed by four instruments were fairly well reproduced to within 33% by a base model run (Regional Atmospheric Chemistry Mechanism with updated isoprene chemistry adapted from Master Chemical Mechanism ver. 3.1) with high R2 values (0.72–0.97) over a range of isoprene (0.3–2 ppb) and NO (0.1–10 ppb) mixing ratios. Daytime HO2(*) levels, reconstructed from the base model results taking into account the sensitivity toward speciated RO2 (organic peroxy) radicals, as recently reported from one of the participating instruments in the HO2 measurement mode, were 93% higher than the observations made by the single instrument. This also indicates an overprediction of the HO2 to OH recycling. Together with the good model-measurement agreement for OH, it implies a missing OH source in the model. Modeled OH and HO2(*) could only be matched to the observations by addition of a strong unknown loss process for HO2(*) that recycles OH at a high yield. Adding to the base model, instead, the recently proposed isomerization mechanism of isoprene peroxy radicals (Peeters and Müller, 2010) increased OH and HO2(*) by 28% and 13% on average. Although these were still only 4% higher than the OH observations made by one of the instruments, larger overestimations (42–70%) occurred with respect to the OH observations made by the other three instruments. The overestimation in OH could be diminished only when reactive alkanes (HC8) were solely introduced to the model to explain the missing fraction of observed OH reactivity. Moreover, the overprediction of HO2(*) became even larger than in the base case. These analyses imply that the rates of the isomerization are not readily supported by the ensemble of radical observations. One of the measurement days was characterized by low isoprene concentrations (∼0.5 ppb) and OH reactivity that was well explained by the observed species, especially before noon. For this selected period, as opposed to the general behavior, the model tended to underestimate HO2(*). We found that this tendency is associated with high NOx concentrations, suggesting that some HO2 production or regeneration processes under high NOx conditions were being overlooked; this might require revision of ozone production regimes.


2005 ◽  
Vol 5 (1) ◽  
pp. 655-702
Author(s):  
M. de Reus ◽  
H. Fischer ◽  
R. Sander ◽  
V. Gros ◽  
R. Kormann ◽  
...  

Abstract. An intensive field measurement campaign was performed in July/August 2002 at the Global Atmospheric Watch station Izaña on Tenerife to study the interaction of mineral dust aerosol and tropospheric chemistry (MINATROC). A dense Saharan dust plume, with aerosol masses exceeding 500 µg m-3, persisted for three days. During this dust event strongly reduced mixing ratios of ROx (HO2, CH3O2 and higher organic peroxy radicals), H2O2, NOx (NO and NO2) and O3 were observed. A chemistry boxmodel, constrained by the measurements, has been used to study gas phase and heterogeneous chemistry. It appeared to be difficult to reproduce the observed HCHO mixing ratios with the model, possibly related to the representation of precursor gas concentrations or the absence of dry deposition. The model calculations indicate that the reduced H2O2 mixing ratios in the dust plume can be explained by including the heterogeneous removal reaction of HO2 with an uptake coefficient of 0.2, or by assuming heterogeneous removal of H2O2 with an accommodation coefficient of 3×10-4. However, these heterogeneous reactions cannot explain the low ROx mixing ratios observed during the dust event. Whereas a mean daytime net ozone production rate (NOP) of 1.06 ppbv/hr occurred throughout the campaign, the reduced ROx and NOx mixing ratios in the Saharan dust plume contributed to a reduced NOP of 0.14–0.32 ppbv/hr, which likely explains the relatively low ozone mixing ratios observed during this event.


2011 ◽  
Vol 11 (4) ◽  
pp. 10721-10767 ◽  
Author(s):  
Q. Liang ◽  
J. M. Rodriguez ◽  
A. R. Douglass ◽  
J. H. Crawford ◽  
E. Apel ◽  
...  

Abstract. We analyze the aircraft observations obtained during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellite (ARCTAS) mission together with the GEOS-5 CO simulation to examine O3 and NOy in the Arctic and sub-Arctic region and their source attribution. Using a number of marker tracers and their probability density distributions, we distinguish various air masses from the background troposphere and examine their contribution to NOx, O3, and O3 production in the Arctic troposphere. The background Arctic troposphere has mean O3 of ~60 ppbv and NOx of ~25 pptv throughout spring and summer with CO decreases from ~145 ppbv in spring to ~100 ppbv in summer. These observed CO, NOx and O3 mixing ratios are not notably different from the values measured during the 1988 ABLE-3A and the 2002 TOPSE field campaigns despite the significant changes in the past two decades in processes that could have changed the Arctic tropospheric composition. Air masses associated with stratosphere-troposphere exchange are present throughout the mid and upper troposphere during spring and summer. These air masses with mean O3 concentration of 140–160 ppbv are the most important direct sources of O3 in the Arctic troposphere. In addition, air of stratospheric origin is the only notable driver of net O3 formation in the Arctic due to its sustainable high NOx (75 pptv in spring and 110 pptv in summer) and NOy (~800 pptv in spring and ~1100 pptv in summer) levels. The ARCTAS measurements present observational evidence suggesting significant conversion of nitrogen from HNO3 to NOx and then to PAN (a net formation of ~120 pptv PAN) in summer when air of stratospheric origin is mixed with tropospheric background during stratosphere-to-troposphere transport. These findings imply that an adequate representation of stratospheric O3 and NOy input are essential in accurately simulating O3 and NOx photochemistry as well as the atmospheric budget of PAN in tropospheric chemistry transport models of the Arctic. Anthropogenic and biomass burning pollution plumes observed during ARCTAS show highly elevated hydrocarbons and NOy (mostly in the form of NOx and PAN), but do not contribute significantly to O3 in the Arctic troposphere except in some of the aged biomass burning plumes sampled during spring. Convection and/or lightning influences are negligible sources of O3 in the Arctic troposphere but can have significant impacts in the upper troposphere in the continental sub-Arctic during summer.


2006 ◽  
Vol 6 (4) ◽  
pp. 7235-7284
Author(s):  
Z. L. Fleming ◽  
P. S. Monks ◽  
A. R. Rickard ◽  
B. J. Bandy ◽  
N. Brough ◽  
...  

Abstract. Peroxy radicals (HO2+ΣRO2) were measured at the Weybourne Atmospheric Observatory (52° N, 1° E), Norfolk using a PEroxy Radical Chemical Amplifier (PERCA) during the winter and summer of 2002. The peroxy radical diurnal cycles showed a marked difference between the winter and summer campaigns with maximum concentrations of 12 pptv at midday in the summer and maximum concentrations as high as 30 pptv (10 min averages) in winter at night. The corresponding nighttime peroxy radical concentrations were not as high in summer (3 pptv). The peroxy radical concentration shows a distinct anti-correlation with increasing NOx during the daylight hours. At night, peroxy radicals increase with increasing NOx indicative of the role of NO3 chemistry. The average diurnal cycles for net ozone production, N(O3) show a large variability in ozone production, P(O3), and a large ozone loss, L(O3) in summer relative to winter. For a daylight average, net ozone production in summer than winter (1.51±0.5 ppbv h−1 and 1.11±0.47 ppbv h−1 respectively) but summer shows more variability of (meteorological) conditions than winter. The variability in NO concentration has a much larger effect on N(O3) than the peroxy radical concentrations. Photostationary state (PSS) calculations show an NO2 lifetime of 5 min in summer and 21 min in the winter, implying that steady-state NO-NO2 ratios are not always attained during the winter months. The results show an active peroxy radical chemistry at night and the ability of winter to make oxidant. The net effect of this with respect to production of ozone in winter is unclear owing to the breakdown in the photostationary state.


2018 ◽  
Author(s):  
Yingying Yan ◽  
David Cabrera-Perez ◽  
Jintai Lin ◽  
Andrea Pozzer ◽  
Lu Hu ◽  
...  

Abstract. The GEOS-Chem model has been updated with the SAPRC-11 aromatics chemical mechanism, with the purpose of evaluating global and regional effects of the most abundant aromatics (benzene, toluene, xylenes) on the chemical species important for tropospheric oxidation capacity. The model evaluation based on surface and aircraft observations indicates good agreement for aromatics and ozone. A comparison between scenarios in GEOS-Chem with simplified aromatic chemistry (as in the standard setup, with no ozone formation from related peroxy radicals or recycling of NOx) and with the SAPRC-11 scheme reveals relatively slight changes in ozone, hydroxyl radical, and nitrogen oxides on a global mean basis (1–4 %), although remarkable regional differences (5–20 %) exist near the source regions. NOx decreases over the source regions and increases in the remote troposphere, due mainly to more efficient transport of peroxyacetyl nitrate (PAN), which is increased with the SAPRC aromatic chemistry. Model ozone mixing ratios with the updated aromatic chemistry increase by up to 5 ppb (more than 10 %), especially in industrially polluted regions. The ozone change is partly due to the direct influence of aromatic oxidation products on ozone production rates, and in part to the altered spatial distribution of NOx that enhances the tropospheric ozone production efficiency. Improved representation of aromatics is important to simulate the tropospheric oxidation.


2019 ◽  
Vol 12 (1) ◽  
pp. 111-130 ◽  
Author(s):  
Yingying Yan ◽  
David Cabrera-Perez ◽  
Jintai Lin ◽  
Andrea Pozzer ◽  
Lu Hu ◽  
...  

Abstract. The Goddard Earth Observing System with chemistry (GEOS-Chem) model has been updated with the State-wide Air Pollution Research Center version 11 (SAPRC-11) aromatics chemical mechanism, with the purpose of evaluating global and regional effects of the most abundant aromatics (benzene, toluene, xylenes) on the chemical species important for tropospheric oxidation capacity. The model evaluation based on surface and aircraft observations indicates good agreement for aromatics and ozone. A comparison between scenarios in GEOS-Chem with simplified aromatic chemistry (as in the standard setup, with no ozone formation from related peroxy radicals or recycling of NOx) and with the SAPRC-11 scheme reveals relatively slight changes in ozone, the hydroxyl radical, and nitrogen oxides on a global mean basis (1 %–4 %), although remarkable regional differences (5 %–20 %) exist near the source regions. NOx decreases over the source regions and increases in the remote troposphere, due mainly to more efficient transport of peroxyacetyl nitrate (PAN), which is increased with the SAPRC aromatic chemistry. Model ozone mixing ratios with the updated aromatic chemistry increase by up to 5 ppb (more than 10 %), especially in industrially polluted regions. The ozone change is partly due to the direct influence of aromatic oxidation products on ozone production rates, and in part to the altered spatial distribution of NOx that enhances the tropospheric ozone production efficiency. Improved representation of aromatics is important to simulate the tropospheric oxidation.


2009 ◽  
Vol 9 (7) ◽  
pp. 2499-2516 ◽  
Author(s):  
E. C. Wood ◽  
S. C. Herndon ◽  
T. B. Onasch ◽  
J. H. Kroll ◽  
M. R. Canagaratna ◽  
...  

Abstract. Observations at a mountain-top site within the Mexico City basin are used to characterize ozone production and destruction, nitrogen oxide speciation and chemistry, and the radical budget, with an emphasis on a stagnant air mass observed on one afternoon. The observations compare well with the results of recent photochemical models. An ozone production rate of ~50 ppbv/h was observed in a stagnant air mass during the afternoon of 12 March 2006, which is among the highest observed anywhere in the world. Approximately half of the ozone destruction was due to the oxidation of NO2. During this time period ozone production was VOC-limited, deduced by a comparison of the radical production rates and the formation rate of NOx oxidation products (NOz). For [NOx]/[NOy] values between 0.2 and 0.8, gas-phase HNO3 typically accounted for less than 10% of NOz and accumulation-mode particulate nitrate (NO3(PM1)−) accounted for 20%–70% of NOz, consistent with high ambient NH3 concentrations. The fraction of NOz accounted for by the sum of HNO3(g) and NO3(PM1)− decreased with photochemical processing. This decrease is apparent even when dry deposition of HNO3 is accounted for, and indicates that HNO3 formation decreased relative to other NOx "sink" processes during the first 12 h of photochemistry and/or a significant fraction of the nitrate was associated with the coarse aerosol size mode. The ozone production efficiency of NOx on 11 and 12 March 2006 was approximately 7 on a time scale of one day. A new metric for ozone production efficiency that relates the dilution-adjusted ozone mixing ratio to cumulative OH exposure is proposed.


2015 ◽  
Vol 15 (15) ◽  
pp. 8795-8808 ◽  
Author(s):  
J. Coates ◽  
T. M. Butler

Abstract. Ground-level ozone is a secondary pollutant produced photochemically from reactions of NOx with peroxy radicals produced during volatile organic compound (VOC) degradation. Chemical transport models use simplified representations of this complex gas-phase chemistry to predict O3 levels and inform emission control strategies. Accurate representation of O3 production chemistry is vital for effective prediction. In this study, VOC degradation chemistry in simplified mechanisms is compared to that in the near-explicit Master Chemical Mechanism (MCM) using a box model and by "tagging" all organic degradation products over multi-day runs, thus calculating the tagged ozone production potential (TOPP) for a selection of VOCs representative of urban air masses. Simplified mechanisms that aggregate VOC degradation products instead of aggregating emitted VOCs produce comparable amounts of O3 from VOC degradation to the MCM. First-day TOPP values are similar across mechanisms for most VOCs, with larger discrepancies arising over the course of the model run. Aromatic and unsaturated aliphatic VOCs have the largest inter-mechanism differences on the first day, while alkanes show largest differences on the second day. Simplified mechanisms break VOCs down into smaller-sized degradation products on the first day faster than the MCM, impacting the total amount of O3 produced on subsequent days due to secondary chemistry.


2004 ◽  
Vol 4 (2) ◽  
pp. 497-509 ◽  
Author(s):  
S. Henne ◽  
M. Furger ◽  
S. Nyeki ◽  
M. Steinbacher ◽  
B. Neininger ◽  
...  

Abstract. Net vertical air mass export by thermally driven flows from the atmospheric boundary layer (ABL) to the free troposphere (FT) above deep Alpine valleys was investigated. The vertical export of pollutants above mountainous terrain is presently poorly represented in global chemistry transport models (GCTMs) and needs to be quantified. Air mass budgets were calculated using aircraft observations obtained in deep Alpine valleys. The results show that on average 3 times the valley air mass is exported vertically per day under fair weather conditions. During daytime the type of valleys investigated in this study can act as an efficient "air pump" that transports pollutants upward. The slope wind system within the valley plays an important role in redistributing pollutants. Nitrogen oxide emissions in mountainous regions are efficiently injected into the FT. This could enhance their ozone (O3) production efficiency and thus influences tropospheric pollution budgets. Once lifted to the FT above the Alps pollutants are transported horizontally by the synoptic flow and are subject to European pollution export. Forward trajectory studies show that under fair weather conditions two major pathways for air masses above the Alps dominate. Air masses moving north are mixed throughout the whole tropospheric column and further transported eastward towards Asia. Air masses moving south descend within the subtropical high pressure system above the Mediterranean.


Sign in / Sign up

Export Citation Format

Share Document