scholarly journals Fluxes and concentrations of volatile organic compounds above central London, UK

2009 ◽  
Vol 9 (4) ◽  
pp. 17297-17333 ◽  
Author(s):  
B. Langford ◽  
E. Nemitz ◽  
E. House ◽  
G. J. Phillips ◽  
D. Famulari ◽  
...  

Abstract. Concentrations and fluxes of eight volatile organic compounds (VOCs) were measured during October 2006 from a high telecom tower above central London, as part of the CityFlux contribution to the REPARTEE I campaign. A continuous flow disjunct eddy covariance technique with analysis by proton transfer reaction mass spectrometry was used. Daily averaged VOC mixing ratios were within the range 1–19 ppb for the oxygenated compounds (methanol, acetaldehyde and acetone) and 0.2–1.3 ppb for the aromatics (benzene, toluene and ethylbenzene). Typical VOC fluxes were in the range 0.1–1.0 mg m−2 h−1. There was a non-linear relationship between VOC fluxes and traffic density for most of the measured compounds. Traffic activity was estimated to account for approximately 70% of the aromatic compound fluxes, whereas non-traffic related sources were found to be more important for methanol and isoprene fluxes. The measured fluxes were comparable to the estimates of the UK national atmospheric emission inventory for the aromatic VOCs and CO. In contrast, fluxes of the oxygenated compounds were about three times larger than inventory estimates. For isoprene and acetonitrile this difference was many times larger. At temperatures over 25°C it is estimated that more than half the isoprene observed in central London is of biogenic origin.

2010 ◽  
Vol 10 (2) ◽  
pp. 627-645 ◽  
Author(s):  
B. Langford ◽  
E. Nemitz ◽  
E. House ◽  
G. J. Phillips ◽  
D. Famulari ◽  
...  

Abstract. Concentrations and fluxes of eight volatile organic compounds (VOCs) were measured during October 2006 from a high telecom tower above central London, as part of the CityFlux contribution to the REPARTEE I campaign. A continuous flow disjunct eddy covariance technique with analysis by proton transfer reaction mass spectrometry was used. Daily averaged VOC mixing ratios were within the range 1–19 ppb for the oxygenated compounds (methanol, acetaldehyde and acetone) and 0.2–1.3 ppb for the aromatics (benzene, toluene and C2-benzenes). Typical VOC fluxes were in the range 0.1–1.0 mg m−2 h−1. There was a non-linear relationship between VOC fluxes and traffic density for most of the measured compounds. Traffic activity was estimated to account for approximately 70% of the aromatic compound fluxes, whereas non-traffic related sources were found to be more important for methanol and isoprene fluxes. The measured fluxes were comparable to the estimates of the UK national atmospheric emission inventory for the aromatic VOCs and CO. In contrast, fluxes of the oxygenated compounds were about three times larger than inventory estimates. For isoprene and acetonitrile this difference was many times larger. At temperatures over 25° C it is estimated that more than half the isoprene observed in central London is of biogenic origin.


2015 ◽  
Vol 15 (5) ◽  
pp. 6601-6644 ◽  
Author(s):  
A. C. Valach ◽  
B. Langford ◽  
E. Nemitz ◽  
A. R. MacKenzie ◽  
C. N. Hewitt

Abstract. Concentrations and fluxes of seven volatile organic compounds (VOCs) were measured between August and December 2012 at a roof-top site in central London as part of the ClearfLo project (Clean Air for London). VOC concentrations were quantified using a proton transfer reaction-mass spectrometer and fluxes were calculated using a virtual disjunct eddy covariance technique. The median VOC fluxes, including aromatics, oxygenated compounds and isoprene, ranged from 0.07 to 0.33 mg m−2 h−1 and mixing ratios were 7.27 ppb for methanol (m / z 33) and <1 ppb for the remaining compounds. Strong relationships were observed between most VOC fluxes and concentrations with traffic density, but also with photosynthetically active radiation (PAR) and temperature for the oxygenated compounds and isoprene. An estimated 50–90 % of aromatic fluxes were attributable to traffic activity, which showed little seasonal variation, suggesting boundary layer effects or possibly advected pollution may be the primary causes of increased concentrations of aromatics in winter. PAR and temperature-dependent processes accounted for the majority of isoprene, methanol and acetaldehyde fluxes and concentrations in August and September, when fluxes and concentrations were largest. Modelled biogenic isoprene fluxes using the G95 algorithm agreed well with measured fluxes in August and September, due to urban vegetation. Comparisons of estimated annual benzene emissions from the London and National Atmospheric Emissions Inventory agreed well with measured benzene fluxes. Flux footprint analysis indicated emission sources were localized and that boundary layer dynamics and source strengths were responsible for temporal and spatial VOC flux and concentration variability during the measurement period.


2015 ◽  
Vol 15 (14) ◽  
pp. 7777-7796 ◽  
Author(s):  
A. C. Valach ◽  
B. Langford ◽  
E. Nemitz ◽  
A. R. MacKenzie ◽  
C. N. Hewitt

Abstract. Concentrations and fluxes of seven volatile organic compounds (VOCs) were measured between August and December 2012 at a rooftop site in central London as part of the ClearfLo project (Clean Air for London). VOC concentrations were quantified using a proton transfer reaction mass spectrometer (PTR-MS) and fluxes were calculated using a virtual disjunct eddy covariance technique. The median VOC fluxes, including aromatics, oxygenated compounds and isoprene, ranged from 0.07 to 0.33 mg m−2 h−1. Median mixing ratios were 7.3 ppb for methanol and < 1 ppb for the other compounds. Strong relationships were observed between the fluxes and concentrations of some VOCs with traffic density and between the fluxes and concentrations of isoprene and oxygenated compounds with photosynthetically active radiation (PAR) and temperature. An estimated 50–90 % of the fluxes of aromatic VOCs were attributable to traffic activity, which showed little seasonal variation, suggesting that boundary layer effects or possibly advected pollution may be the primary causes of increased concentrations of aromatics in winter. Isoprene, methanol and acetaldehyde fluxes and concentrations in August and September showed high correlations with PAR and temperature, when fluxes and concentrations were largest suggesting that biogenic sources contributed to their fluxes. Modelled biogenic isoprene fluxes from urban vegetation using the Guenther et al. (1995) algorithm agreed well with measured fluxes in August and September. Comparisons of estimated annual benzene emissions from both the London and the National Atmospheric Emissions Inventories agreed well with measured benzene fluxes. Flux footprint analysis indicated emission sources were localised and that boundary layer dynamics and source strengths were responsible for temporal and spatial VOC flux and concentration variability during the measurement period.


Ocean Science ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 925-940 ◽  
Author(s):  
Charel Wohl ◽  
David Capelle ◽  
Anna Jones ◽  
William T. Sturges ◽  
Philip D. Nightingale ◽  
...  

Abstract. We present a technique that utilises a segmented flow coil equilibrator coupled to a proton-transfer-reaction mass spectrometer to measure a broad range of dissolved volatile organic compounds. Thanks to its relatively large surface area for gas exchange, small internal volume, and smooth headspace–water separation, the equilibrator is highly efficient for gas exchange and has a fast response time (under 1 min). The system allows for both continuous and discrete measurements of volatile organic compounds in seawater due to its low sample water flow (100 cm3 min−1) and the ease of changing sample intake. The equilibrator setup is both relatively inexpensive and compact. Hence, it can be easily reproduced and installed on a variety of oceanic platforms, particularly where space is limited. The internal area of the equilibrator is smooth and unreactive. Thus, the segmented flow coil equilibrator is expected to be less sensitive to biofouling and easier to clean than membrane-based equilibration systems. The equilibrator described here fully equilibrates for gases that are similarly soluble or more soluble than toluene and can easily be modified to fully equilibrate for even less soluble gases. The method has been successfully deployed in the Canadian Arctic. Some example data from underway surface water and Niskin bottle measurements in the sea ice zone are presented to illustrate the efficacy of this measurement system.


Sign in / Sign up

Export Citation Format

Share Document