scholarly journals <i>Preface</i> Transdisciplinary concepts and modelling strategies for the assessment of complex environmental systems <i>Proceedings of the 12th Workshop on Large-scale Hydrological Modelling</i>

2009 ◽  
Vol 21 ◽  
pp. 1-1 ◽  
Author(s):  
B. Schmalz ◽  
K. Bieger ◽  
N. Fohrer

2021 ◽  
Author(s):  
Moctar Dembélé ◽  
Bettina Schaefli ◽  
Grégoire Mariéthoz

&lt;p&gt;The diversity of remotely sensed or reanalysis-based rainfall data steadily increases, which on one hand opens new perspectives for large scale hydrological modelling in data scarce regions, but on the other hand poses challenging question regarding parameter identification and transferability under multiple input datasets. This study analyzes the variability of hydrological model performance when (1) a set of parameters is transferred from the calibration input dataset to a different meteorological datasets and reversely, when (2) an input dataset is used with a parameter set, originally calibrated for a different input dataset.&lt;/p&gt;&lt;p&gt;The research objective is to highlight the uncertainties related to input data and the limitations of hydrological model parameter transferability across input datasets. An ensemble of 17 rainfall datasets and 6 temperature datasets from satellite and reanalysis sources (Demb&amp;#233;l&amp;#233; et al., 2020), corresponding to 102 combinations of meteorological data, is used to force the fully distributed mesoscale Hydrologic Model (mHM). The mHM model is calibrated for each combination of meteorological datasets, thereby resulting in 102 calibrated parameter sets, which almost all give similar model performance. Each of the 102 parameter sets is used to run the mHM model with each of the 102 input datasets, yielding 10404 scenarios to that serve for the transferability tests. The experiment is carried out for a decade from 2003 to 2012 in the large and data-scarce Volta River basin (415600 km2) in West Africa.&lt;/p&gt;&lt;p&gt;The results show that there is a high variability in model performance for streamflow (mean CV=105%) when the parameters are transferred from the original input dataset to other input datasets (test 1 above). Moreover, the model performance is in general lower and can drop considerably when parameters obtained under all other input datasets are transferred to a selected input dataset (test 2 above). This underlines the need for model performance evaluation when different input datasets and parameter sets than those used during calibration are used to run a model. Our results represent a first step to tackle the question of parameter transferability to climate change scenarios. An in-depth analysis of the results at a later stage will shed light on which model parameterizations might be the main source of performance variability.&lt;/p&gt;&lt;p&gt;Demb&amp;#233;l&amp;#233;, M., Schaefli, B., van de Giesen, N., &amp; Mari&amp;#233;thoz, G. (2020). Suitability of 17 rainfall and temperature gridded datasets for large-scale hydrological modelling in West Africa. Hydrology and Earth System Sciences (HESS). https://doi.org/10.5194/hess-24-5379-2020&lt;/p&gt;


2021 ◽  
Vol 146 ◽  
pp. 105225
Author(s):  
Susanna Dazzi ◽  
Iuliia Shustikova ◽  
Alessio Domeneghetti ◽  
Attilio Castellarin ◽  
Renato Vacondio

Solid Earth ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 1685-1705
Author(s):  
Silvia Salas-Romero ◽  
Alireza Malehmir ◽  
Ian Snowball ◽  
Benoît Dessirier

Abstract. Quick-clay landslides are common geohazards in Nordic countries and Canada. The presence of potential quick clays is confirmed using geotechnical investigations, but near-surface geophysical methods, such as seismic and resistivity surveys, can also help identify coarse-grained materials associated with the development of quick clays. We present the results of reflection seismic investigations on land and in part of the Göta River in Sweden, along which many quick-clay landslide scars exist. This is the first time that such a large-scale reflection seismic investigation has been carried out to study the subsurface structures associated with quick-clay landslides. The results also show a reasonable correlation with radio magnetotelluric and travel-time tomography models of the subsurface. Other ground geophysical data, such as high magnetic values, suggest a positive correlation with an increased thickness of the coarse-grained layer and shallower depths to the top of the bedrock and the top of the coarse-grained layer. The morphology of the river bottom and riverbanks, e.g. subaquatic landslide deposits, is shown by side-scan sonar and bathymetric data. Undulating bedrock, covered by subhorizontal sedimentary glacial and postglacial deposits, is clearly revealed. An extensive coarse-grained layer (P-wave velocity mostly between 1500 and 2500 m s−1 and resistivity from approximately 80 to 100 Ωm) exists within the sediments and is interpreted and modelled in a regional context. Several fracture zones are identified within the bedrock. Hydrological modelling of the coarse-grained layer confirms its potential for transporting fresh water infiltrated in fractures and nearby outcrops located in the central part of the study area. The modelled groundwater flow in this layer promotes the leaching of marine salts from the overlying clays by seasonal inflow–outflow cycles and/or diffusion, which contributes to the formation of potential quick clays.


2002 ◽  
Vol 29 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Elhadi Shakshuki ◽  
Kumaraswamy Ponnambalam ◽  
Tassew Wodaj

Uncertainty is an inherent feature of environmental systems, which makes probabilistic models important. Environmental risk assessment is an important but time consuming task. For large-scale systems, use of linear systems with uncertainty information on parameters and inputs is one of the few possible methods to assess risk. To estimate risk, it is necessary to have at least the first two moments of output variables. This paper describes an efficient method developed for second-moment analysis of linear systems with uncertain coefficients. The main objective is to provide the means and the variances of the output and to provide efficient formulation and automation of the moment equations. This method is demonstrated in two real-world applications of environmental modeling.Key words: uncertainty, second-moment methods, risk analysis, reliability, linear systems.


2020 ◽  
Author(s):  
Vera Thiemig ◽  
Peter Salamon ◽  
Goncalo N. Gomes ◽  
Jon O. Skøien ◽  
Markus Ziese ◽  
...  

&lt;p&gt;We present EMO-5, a Pan-European high-resolution (5 km), (sub-)daily, multi-variable meteorological data set especially developed to the needs of an operational, pan-European hydrological service (EFAS; European Flood Awareness System). The data set is built on historic and real-time observations coming from 18,964 meteorological in-situ stations, collected from 24 data providers, and 10,632 virtual stations from four high-resolution regional observational grids (CombiPrecip, ZAMG - INCA, EURO4M-APGD and CarpatClim) as well as one global reanalysis product (ERA-Interim-land). This multi-variable data set covers precipitation, temperature (average, min and max), wind speed, solar radiation and vapor pressure; all at daily resolution and in addition 6-hourly resolution for precipitation and average temperature. The original observations were thoroughly quality controlled before we used the Spheremap interpolation method to estimate the variable values for each of the 5 x 5 km grid cells and their affiliated uncertainty. EMO-5 v1 grids covering the time period from 1990 till 2019 will be released as a free and open Copernicus product mid-2020 (with a near real-time release of the latest gridded observations in future). We would like to present the great potential EMO-5 holds for the hydrological modelling community.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;footnote: EMO = European Meteorological Observations&lt;/p&gt;


2021 ◽  
Vol 2 ◽  
pp. 18040
Author(s):  
Tony Jakeman ◽  
Ioannis Athanasiadis ◽  
Serena Hamilton

As the journal nears the end of its second official year, we are pleased to start accepting submissions to our first two Special Issues. The first Special Issue is on Resilience of complex coupled Socio-Technical-Environmental systems through the modeling lens with guest editors Tatiana Filatova, Tina Comes (4TU Resilience Engineering Centre), Christoph Hoelscher (ETH Zurich) and Juliet Mian (Resilence Shift). This Special Issue aims to bring together cutting-edge research and international practice to offer insights into the latest scientific modelling methods, gaps, challenges and opportunities and best practice examples relating to operationalising resilience across a range of socio-technical-environmental applications. The second Special Issue is on Large-scale behavioural models of land use change with guest editors Calum Brown (Karlsruhe Institute of Technology), Tatiana Filatova (University of Twente), Birgit Müller (Helmholtz Centre for Environmental Research – UFZ), and Derek Robinson (University of Waterloo). This Special Issue is focussed on better understanding and modelling of temporal or spatial scales in land use dynamics.   We invite new proposals for Special Issues that fit within SESMO’s aims and scope. Our Special Issues are cohesive collections of articles focussed on a specific contemporary theme related to socio-environmental systems modelling. The Special Issue can build on previous work and research gaps, but can also explore new and emerging terrain relevant to our aims. Although the conceptualisation of a Special Issue may be initiated in a conference or workshop, it is critical that such a proposal also builds on the original dialogue. Articles should also be canvassed from across the globe. SESMO is an open access journal with no article processing or publication charges for authors. If you have a topic to propose, please contact us to discuss further.


Sign in / Sign up

Export Citation Format

Share Document