scholarly journals Editorial: SESMO Special Issues

2021 ◽  
Vol 2 ◽  
pp. 18040
Author(s):  
Tony Jakeman ◽  
Ioannis Athanasiadis ◽  
Serena Hamilton

As the journal nears the end of its second official year, we are pleased to start accepting submissions to our first two Special Issues. The first Special Issue is on Resilience of complex coupled Socio-Technical-Environmental systems through the modeling lens with guest editors Tatiana Filatova, Tina Comes (4TU Resilience Engineering Centre), Christoph Hoelscher (ETH Zurich) and Juliet Mian (Resilence Shift). This Special Issue aims to bring together cutting-edge research and international practice to offer insights into the latest scientific modelling methods, gaps, challenges and opportunities and best practice examples relating to operationalising resilience across a range of socio-technical-environmental applications. The second Special Issue is on Large-scale behavioural models of land use change with guest editors Calum Brown (Karlsruhe Institute of Technology), Tatiana Filatova (University of Twente), Birgit Müller (Helmholtz Centre for Environmental Research – UFZ), and Derek Robinson (University of Waterloo). This Special Issue is focussed on better understanding and modelling of temporal or spatial scales in land use dynamics.   We invite new proposals for Special Issues that fit within SESMO’s aims and scope. Our Special Issues are cohesive collections of articles focussed on a specific contemporary theme related to socio-environmental systems modelling. The Special Issue can build on previous work and research gaps, but can also explore new and emerging terrain relevant to our aims. Although the conceptualisation of a Special Issue may be initiated in a conference or workshop, it is critical that such a proposal also builds on the original dialogue. Articles should also be canvassed from across the globe. SESMO is an open access journal with no article processing or publication charges for authors. If you have a topic to propose, please contact us to discuss further.

The Holocene ◽  
2019 ◽  
Vol 29 (10) ◽  
pp. 1517-1530 ◽  
Author(s):  
Johannes Müller ◽  
Wiebke Kirleis

Transformations of human societies and environments are closely interwoven. Due to improved possibilities of paleoecological reconstruction and archaeological methods, we are now in a position to empirically collect detailed data from a variety of records. The Collaborative Research Centre 1266 ‘Scales of Transformation’ has developed a concept in which both deductive and inductive transformation dimensions are compared on different temporal and spatial scales. This concept includes the connection between the environmental and social spheres, which are often inseparable. Accordingly, a holistic principle of socio-environmental research is developed, which is exemplified by the contributions to this special issue of The Holocene.


2004 ◽  
Vol 8 (3) ◽  
pp. 279-285 ◽  
Author(s):  
R. A. Farmer ◽  
T. R. Nisbet

Abstract. This paper overviews changes in forest management in the UK with respect to environmental protection. The evolution of policy is explained from historical and sustainability perspectives and covers developments in forest planning, accreditation, devolution and future challenges and opportunities. Keywords: forest management, best practice, sustainable forestry, environmental protection, land use change


Author(s):  
Jack Steven Goulding ◽  
Farzad Pour Rahimian

The Architecture, Engineering and Construction (AEC) sectors are facing unprecedented challenges, not just with increased complexity of projects per se, but design-related integration. This requires stakeholders to radically re-think their existing business models (and thinking that underpins them), but also the technological challenges and skills required to deliver these projects. Whilst opponents will no doubt cite that this is nothing new as the sector as a whole has always had to respond to change; the counter to this is that design ‘creativity’ is now much more dependent on integration from day one. Given this, collaborative processes embedded in Building Information Modelling (BIM) models have been proffered as a panacea solution to embrace this change and deliver streamlined integration. The veracity of design teams’ “project data” is increasingly becoming paramount - not only for the coordination of design, processes, engineering services, fabrication, construction, and maintenance; but more importantly, facilitate ‘true’ project integration and interchange – the actualisation of which will require firm consensus and commitment. This Special Issue envisions some of these issues, challenges and opportunities (from a future landscape perspective), by highlighting a raft of concomitant factors, which include: technological challenges, design visualisation and integration, future digital tools, new and anticipated operating environments, and training requirements needed to deliver these aspirations. A fundamental part of this Special Issue’s ‘call’ was to capture best practice in order to demonstrate how design, visualisation and delivery processes (and technologies) affect the finished product viz: design outcome, design procedures, production methodologies and construction implementation. In this respect, the use of virtual environments are now particularly effective at supporting the design and delivery processes. In summary therefore, this Special Issue presents nine papers from leading scholars, industry and contemporaries. These papers provide an eclectic (but cognate) representation   of AEC design visualisation and integration; which not only uncovers new insight and understanding of these challenges and solutions, but also provides new theoretical and practice signposts for future research. 


2010 ◽  
Vol 41 (3-4) ◽  
pp. 295-319 ◽  
Author(s):  
Göran Lindström ◽  
Charlotta Pers ◽  
Jörgen Rosberg ◽  
Johan Strömqvist ◽  
Berit Arheimer

The HYPE model is a hydrological model for small-scale and large-scale assessments of water resources and water quality, developed at the Swedish Meteorological and Hydrological Institute during 2005–2007. In the model, the landscape is divided into classes according to soil type, land use and altitude. In agricultural lands the soil is divided into three layers, each with individual computations of soil wetness and nutrient processes. The model simulates water flow and transport and turnover of nitrogen and phosphorus. Nutrients follow the same pathways as water in the model: surface runoff, macropore flow, tile drainage and outflow from individual soil layers. Rivers and lakes are described separately with routines for turnover of nutrients in each environment. Model parameters are global, or coupled to soil type or land use. The model was evaluated both by local calibrations to internal variables from different test basins and to data on discharge and nutrients from a large number of small basins. In addition, the estimated parameters were transferred to two larger basins in southern Sweden: River Rönneå and River Vindån. The resulting simulations were generally in good agreement with observations.


Processes ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 15 ◽  
Author(s):  
Michael A. Henson

The Special Issue “Feature Papers for Celebrating the Fifth Anniversary of the Founding of Processes” represents a landmark for this open access journal covering chemical, biological, materials, pharmaceutical, and environmental systems as well as general computational methods for process and systems engineering. [...]


2021 ◽  
Vol 25 (4) ◽  
pp. 2239-2259
Author(s):  
Aaron Smith ◽  
Doerthe Tetzlaff ◽  
Lukas Kleine ◽  
Marco Maneta ◽  
Chris Soulsby

Abstract. Quantifying how vegetation mediates water partitioning at different spatial and temporal scales in complex, managed catchments is fundamental for long-term sustainable land and water management. Estimations from ecohydrological models conceptualising how vegetation regulates the interrelationships between evapotranspiration losses, catchment water storage dynamics, and recharge and runoff fluxes are needed to assess water availability for a range of ecosystem services and evaluate how these might change under increasing extreme events, such as droughts. Currently, the feedback mechanisms between water and mosaics of different vegetation and land cover are not well understood across spatial scales, and the effects of different scales on the skill of ecohydrological models needs to be clarified. We used the tracer-aided ecohydrological model EcH2O-iso in an intensively monitored 66 km2 mixed land use catchment in northeastern Germany to quantify water flux–storage–age interactions at four model grid resolutions (250, 500, 750, and 1000 m). This used a fusion of field (including precipitation, soil water, groundwater, and stream isotopes) and remote sensing data in the calibration. Multicriteria calibration across the catchment at each resolution revealed some differences in the estimation of fluxes, storages, and water ages. In general, model sensitivity decreased and uncertainty increased with coarser model resolutions. Larger grids were unable to replicate observed streamflow and distributed isotope dynamics in the way smaller pixels could. However, using isotope data in the calibration still helped constrain the estimation of fluxes, storage, and water ages at coarser resolutions. Despite using the same data and parameterisation for calibration at different grid resolutions, the modelled proportion of fluxes differed slightly at each resolution, with coarse models simulating higher evapotranspiration, lower relative transpiration, increased overland flow, and slower groundwater movement. Although the coarser resolutions also revealed higher uncertainty and lower overall model performance, the overall results were broadly similar. The study shows that tracers provide effective calibration constraints on larger resolution ecohydrological modelling and help us understand the influence of grid resolution on the simulation of vegetation–soil interactions. This is essential in interpreting associated uncertainty in estimating land use influence on large-scale “blue” (ground and surface water) and “green” (vegetation and evaporated water) fluxes, particularly for future environmental change.


2020 ◽  
Author(s):  
Aaron A. Smith ◽  
Doerthe Tetzlaff ◽  
Lukas Kleine ◽  
Marco Maneta ◽  
Chris Soulsby

Abstract. Quantifying how vegetation mediates water partitioning at different spatial and temporal scales in complex, managed catchments is fundamental for long-term sustainable land and water management. Estimations from ecohydrological models conceptualizing how vegetation regulates the inter-relationships between catchment water storage dynamics, evapotranspiration losses, and recharge/runoff fluxes are needed to assess water availability for a range of ecosystem services; and evaluate how these might change under increasing extreme events, such as droughts. Currently, the feedback mechanisms between water and mosaics of different vegetation/land cover are not well understood across spatial scales and the effects of scale on the skill of ecohydrological models needs to be clarified. We used the tracer-aided ecohydrological model EcH2O-iso in an intensively monitored 66 km2 mixed land-use catchment in NE Germany to quantify water flux-storage-age interactions at four model-grid resolutions (250, 500, 750, and 1000 m). This used a fusion of field (including precipitation, soil water, groundwater, and stream isotopes) and remote sensed data in the calibration. Multi-criteria calibration across the catchment at each resolution revealed some differences in the estimation of fluxes, storages, and water ages. Larger grid-resolutions were unable to replicate observed streamflow and distributed isotope dynamics in the way smaller pixels could. However, using isotope data in the calibration still helped in constraining the estimation of fluxes, storage and water ages at coarser resolutions. Despite using the same data and parameterisation for calibration at different grid resolutions, the modelled proportion of fluxes differed slightly at each resolution, with coarse models simulating higher evapotranspiration, lower relative transpiration, increased overland flow, and slower groundwater movement. Although the coarser resolutions also revealed higher uncertainty and lower overall model performance, the overall results were broadly consistent. The study shows that tracers provide effective calibration constraints on larger resolution ecohydrological modelling and help understand the influence of grid-resolution on the simulation of vegetation-soil interactions. This is essential in interpreting associated uncertainty in estimating land-use influence on large-scale blue (ground and surface water) and green (vegetation and evaporated water) fluxes, particularly for future environmental change.


2019 ◽  
Author(s):  
Elisabeth A. Wilde ◽  
Emily L. Dennis ◽  
David F Tate

The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) consortium brings together researchers from around the world to try to identify the genetic underpinnings of brain structure and function, along with robust, generalizable effects of neurological and psychiatric disorders. The recently-formed ENIGMA Brain Injury working group includes 8 subgroups, based largely on injury mechanism and patient population. This introduction to the special issue summarizes the history, organization, and objectives of ENIGMA Brain Injury, and includes a discussion of strategies, challenges, opportunities and goals common across 6 of the subgroups under the umbrella of ENIGMA Brain Injury. The following articles in this special issue, including 6 articles from different subgroups, will detail the challenges and opportunities specific to each subgroup.


Sign in / Sign up

Export Citation Format

Share Document