scholarly journals All-sky photogrammetry techniques to georeference a cloud field

2018 ◽  
Vol 11 (1) ◽  
pp. 593-609 ◽  
Author(s):  
Pierre Crispel ◽  
Gregory Roberts

Abstract. In this study, we present a novel method of identifying and geolocalizing cloud field elements from a portable all-sky camera stereo network based on the ground and oriented towards zenith. The methodology is mainly based on stereophotogrammetry which is a 3-D reconstruction technique based on triangulation from corresponding stereo pixels in rectified images. In cases where clouds are horizontally separated, identifying individual positions is performed with segmentation techniques based on hue filtering and contour detection algorithms. Macroscopic cloud field characteristics such as cloud layer base heights and velocity fields are also deduced. In addition, the methodology is fitted to the context of measurement campaigns which impose simplicity of implementation, auto-calibration, and portability. Camera internal geometry models are achieved a priori in the laboratory and validated to ensure a certain accuracy in the peripheral parts of the all-sky image. Then, stereophotogrammetry with dense 3-D reconstruction is applied with cameras spaced 150 m apart for two validation cases. The first validation case is carried out with cumulus clouds having a cloud base height at 1500 m a.g.l. The second validation case is carried out with two cloud layers: a cumulus fractus layer with a base height at 1000 m a.g.l. and an altocumulus stratiformis layer with a base height of 2300 m a.g.l. Velocity fields at cloud base are computed by tracking image rectangular patterns through successive shots. The height uncertainty is estimated by comparison with a Vaisala CL31 ceilometer located on the site. The uncertainty on the horizontal coordinates and on the velocity field are theoretically quantified by using the experimental uncertainties of the cloud base height and camera orientation. In the first cumulus case, segmentation of the image is performed to identify individuals clouds in the cloud field and determine the horizontal positions of the cloud centers.

2017 ◽  
Author(s):  
Pierre Crispel ◽  
Gregory Roberts

Abstract. In this study, we present a novel method of identifying and geolocalizing cloud field elements from a portable all-sky camera stereo network based on the ground and oriented towards zenith. The methodology is mainly based on stereophotogrammetry which is a 3D reconstruction technique based on triangulation from corresponding stereo pixels in rectified images. In cases where clouds are horizontally separated, identifying individual positions is performed with segmentation techniques based on hue filtering and contour detection algorithms. Macroscopic cloud field characteristics such as cloud layer base heights and velocity fields are also deduced. In addition, the methodology is fitted to the context of measurement campaigns which impose simplicity of implementation, auto-calibration, and portability. Camera internal geometry models are achieved a priori in the laboratory and validated to ensure a certain accuracy in the peripheral parts of the all-sky image. Then, stereophotogrammetry with dense 3D reconstruction is applied with cameras spaced 150 m apart for two validation cases. The first validation case is carried out with cumulus clouds having a cloud base height at 1500 m a.g.l. The second validation case is carried out with two cloud layers: a cumulus fractus layer with a base height at 1000 m a.g.l. and an altocumulus stratiformis layer with a base height of 2300 m a.g.l. Velocity fields at cloud base are computed by tracking image rectangular patterns through successive shots. The height uncertainty is estimated by comparison with a Vaïsala CL31 ceilometer located on the site. The uncertainty on the horizontal coordinates and on the velocity field are theoretically quantified by using the experimental uncertainties of the cloud base height and camera orientation. In the first cumulus case, segmentation of the image is performed to identify individuals clouds in the cloud field and determine the horizontal positions of the cloud centers.


2019 ◽  
Vol 76 (8) ◽  
pp. 2539-2558 ◽  
Author(s):  
Youtong Zheng

Abstract Zheng and Rosenfeld found linear relationships between the convective updrafts and cloud-base height zb using ground-based observations over both land and ocean. The empirical relationships allow for a novel satellite remote sensing technique of inferring the cloud-base updrafts and cloud condensation nuclei concentration, both of which are important for understanding aerosol–cloud–climate interactions but have been notoriously difficult to retrieve from space. In Part I of a two-part study, a theoretical framework is established for understanding this empirical relationship over the ocean. Part II deals with continental cumulus clouds. Using the bulk concept of mixed-layer (ML) model for shallow cumulus, I found that this relationship arises from the conservation law of energetics that requires the radiative flux divergence of an ML to balance surface buoyancy flux. Given a certain ML radiative cooling rate per unit mass Q, a deeper ML (higher zb) undergoes more radiative cooling and requires stronger surface buoyancy flux to balance it, leading to stronger updrafts. The rate with which the updrafts vary with zb is modulated by Q. The cooling rate Q manifests strong resilience to external large-scale forcing that spans a wide range of climatology, allowing the slope of the updrafts–zb relationship to remain nearly invariant. This causes the relationship to manifest linearity. The physical mechanism underlying the resilience of Q to large-scale forcing, such as free-tropospheric moisture and sea surface temperature, is investigated through the lens of the radiative transfer theory (two-stream Schwarzschild equations) and an ML model for shallow cumulus.


2020 ◽  
Vol 77 (4) ◽  
pp. 1313-1328 ◽  
Author(s):  
Youtong Zheng ◽  
Mirjana Sakradzija ◽  
Seoung-Soo Lee ◽  
Zhanqing Li

Abstracts This is the Part II of a two-part study that seeks a theoretical understanding of an empirical relationship for shallow cumulus clouds: subcloud updraft velocity covaries linearly with the cloud-base height. This work focuses on continental cumulus clouds that are more strongly forced by surface fluxes and more deviated from equilibrium than those over oceans (Part I). We use a simple analytical model for shallow cumulus that is well tested against a high-resolution (25 m in the horizontal) large-eddy simulation model. Consistent with a conventional idea, we find that surface Bowen ratio is the key variable that regulates the covariability of both parameters: under the same solar insolation, a drier surface allows for stronger buoyancy flux, triggering stronger convection that deepens the subcloud layer. We find that the slope of the Bowen-ratio-regulated relationship between the two parameters (defined as λ) is dependent on both the local time and the stability of the lower free atmosphere. The value of λ decreases with time exponentially from sunrise to early afternoon and linearly from early afternoon to sunset. The value of λ is larger in a more stable atmosphere. In addition, continental λ in the early afternoon more than doubles the oceanic λ. Validation of the theoretical results against ground observations over the Southern Great Plains shows a reasonable agreement. Physical mechanisms underlying the findings are explained from the perspective of different time scales at which updrafts and cloud-base height respond to a surface flux forcing.


2017 ◽  
Vol 34 (3) ◽  
pp. 567-583 ◽  
Author(s):  
Curtis J. Seaman ◽  
Yoo-Jeong Noh ◽  
Steven D. Miller ◽  
Andrew K. Heidinger ◽  
Daniel T. Lindsey

AbstractThe operational VIIRS cloud-base height (CBH) product from the Suomi–National Polar-Orbiting Partnership (SNPP) satellite is compared against observations of CBH from the cloud profiling radar (CPR) on board CloudSat. Because of the orbits of SNPP and CloudSat, these instruments provide nearly simultaneous observations of the same locations on Earth for a ~4.5-h period every 2–3 days. The methodology by which VIIRS and CloudSat observations are spatially and temporally matched is outlined. Based on four 1-month evaluation periods representing each season from June 2014 to April 2015, statistics related to the VIIRS CBH retrieval performance have been collected. Results indicate that when compared against CloudSat, the VIIRS CBH retrieval does not meet the error specifications set by the Joint Polar Satellite System (JPSS) program, with a root-mean-square error (RMSE) of 3.7 km for all clouds globally. More than half of all matching VIIRS pixels and CloudSat profiles have CBH errors exceeding the 2-km error requirement. Underscoring the significance of these statistics, it is shown that a simple estimate based on a constant cloud geometric thickness of 2 km outperforms the current operational CBH algorithm. It was found that the performance of the CBH product is impacted by the accuracy of upstream retrievals [primarily cloud-top height (CTH)] and the a priori information used by the CBH retrieval algorithm. However, even when CTH errors were small, CBH errors still exceed the JPSS program error specifications with an RMSE of 2.3 km.


2018 ◽  
Vol 76 (1) ◽  
pp. 87-94 ◽  
Author(s):  
PW Miller ◽  
TL Mote ◽  
CA Ramseyer ◽  
AE Van Beusekom ◽  
M Scholl ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. 81-89
Author(s):  
Robert Penner

Abstract Tools developed by Moderna, BioNTech/Pfizer, and Oxford/Astrazeneca, among others, provide universal solutions to previously problematic aspects of drug or vaccine delivery, uptake and toxicity, portending new tools across the medical sciences. A novel method is presented based on estimating protein backbone free energy via geometry to predict effective antiviral targets, antigens and vaccine cargos that are resistant to viral mutation. This method is reviewed and reformulated in light of the recent proliferation of structural data on the SARS-CoV-2 spike glycoprotein and its mutations in multiple lineages. Key findings include: collections of mutagenic residues reoccur across strains, suggesting cooperative convergent evolution; most mutagenic residues do not participate in backbone hydrogen bonds; metastability of the glyco-protein limits the change of free energy through mutation thereby constraining selective pressure; and there are mRNA or virus-vector cargos targeting low free energy peptides proximal to conserved high free energy peptides providing specific recipes for vaccines with greater specificity than the full-spike approach. These results serve to limit peptides in the spike glycoprotein with high mutagenic potential and thereby provide a priori constraints on viral and attendant vaccine evolution. Scientific and regulatory challenges to nucleic acid therapeutic and vaccine development and deployment are finally discussed.


Author(s):  
Güleser Kalaycı Demir

In this work, we propose a novel method for determining oriented energy features of an image. Oriented energy features, useful for many machine vision applications like contour detection, texture segmentation and motion analysis, are determined from the filters whose outputs are enhanced at the edges of the image at a given orientation. We use the eigenvectors and eigenvalues of graph Laplacian for determining the oriented energy features of an image. Our method is based on spectral graph theoretical approach in which a graph is assigned complex-valued edge weights whose phases encode orientation information. These edge weights give rise to a complex-valued Hermitian Laplacian whose spectrum enables us to extract oriented energy features of the image. We perform a set of numerical experiments to determine the efficiency and characteristics of the proposed method. In addition, we apply our feature extraction method to texture segmentation problem. We do this in comparison with other known methods, and show that our method performs better for various test textures.


2016 ◽  
Vol 144 (2) ◽  
pp. 681-701 ◽  
Author(s):  
Virendra P. Ghate ◽  
Mark A. Miller ◽  
Ping Zhu

Abstract Marine nonprecipitating cumulus topped boundary layers (CTBLs) observed in a tropical and in a trade wind region are contrasted based on their cloud macrophysical, dynamical, and radiative structures. Data from the Atmospheric Radiation Measurement (ARM) observational site previously operating at Manus Island, Papua New Guinea, and data collected during the deployment of ARM Mobile Facility at the island of Graciosa, in the Azores, were used in this study. The tropical marine CTBLs were deeper, had higher surface fluxes and boundary layer radiative cooling, but lower wind speeds compared to their trade wind counterparts. The radiative velocity scale was 50%–70% of the surface convective velocity scale at both locations, highlighting the prominent role played by radiation in maintaining turbulence in marine CTBLs. Despite greater thicknesses, the chord lengths of tropical cumuli were on average lower than those of trade wind cumuli, and as a result of lower cloud cover, the hourly averaged (cloudy and clear) liquid water paths of tropical cumuli were lower than the trade wind cumuli. At both locations ~70% of the cloudy profiles were updrafts, while the average amount of updrafts near cloud base stronger than 1 m s−1 was ~22% in tropical cumuli and ~12% in the trade wind cumuli. The mean in-cloud radar reflectivity within updrafts and mean updraft velocity was higher in tropical cumuli than the trade wind cumuli. Despite stronger vertical velocities and a higher number of strong updrafts, due to lower cloud fraction, the updraft mass flux was lower in the tropical cumuli compared to the trade wind cumuli. The observations suggest that the tropical and trade wind marine cumulus clouds differ significantly in their macrophysical and dynamical structures.


Sign in / Sign up

Export Citation Format

Share Document