scholarly journals Validation of TROPOMI tropospheric NO<sub>2</sub> columns using dual-scan multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements in Uccle, Brussels

2020 ◽  
Vol 13 (10) ◽  
pp. 5165-5191 ◽  
Author(s):  
Ermioni Dimitropoulou ◽  
François Hendrick ◽  
Gaia Pinardi ◽  
Martina M. Friedrich ◽  
Alexis Merlaud ◽  
...  

Abstract. Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements of aerosols and tropospheric nitrogen dioxide (NO2) were carried out in Uccle (50.8∘ N, 4.35∘ E), Brussels, during 1 year from March 2018 until March 2019. The instrument was operated in both the UV and visible wavelength ranges in a dual-scan configuration consisting of two sub-modes: (1) an elevation scan in a fixed viewing azimuthal direction (the so-called main azimuthal direction) pointing to the northeast and (2) an azimuthal scan in a fixed low elevation angle (2∘). By applying a vertical profile inversion algorithm in the main azimuthal direction and a parameterization technique in the other azimuthal directions, near-surface NO2 volume mixing ratios (VMRs) and vertical column densities (VCDs) were retrieved in 10 different azimuthal directions. The dual-scan MAX-DOAS dataset allows for partly resolving the horizontal distribution of NO2 around the measurement site and studying its seasonal variations. Furthermore, we show that measuring the tropospheric NO2 VCDs in different azimuthal directions improves the spatial colocation with measurements from the Sentinel-5 Precursor (S5P), leading to a reduction of the spread in validation results. By using NO2 vertical profile information derived from the MAX-DOAS measurements, we also resolve a systematic underestimation in S5P NO2 data due to the use of inadequate a priori NO2 profile shape data in the satellite retrieval.

2020 ◽  
Author(s):  
Ermioni Dimitropoulou ◽  
Francois Hendrick ◽  
Martine M. Friedrich ◽  
Gaia Pinardi ◽  
Frederik Tack ◽  
...  

&lt;p&gt;Ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of aerosols, tropospheric nitrogen dioxide (NO&lt;sub&gt;2&lt;/sub&gt;) and formaldehyde (HCHO) have been carried out in Uccle, Brussels, during two years (March 2018 &amp;#8211; March 2020). The MAX-DOAS instrument has been operating in both UV and visible (Vis) wavelength ranges in a dual-scan configuration consisting of two sub-modes: (1) an elevation scan in a fixed viewing azimuthal direction (the so-called main azimuthal direction) pointing and (2) an azimuthal scan in a fixed low elevation angle (2&lt;sup&gt;o&lt;/sup&gt;). By applying a vertical profile inversion algorithm in the main azimuthal direction and an adapted version of the parameterization technique proposed by Sinreich et al. (2013) in the other azimuthal directions, near-surface &amp;#160;concentrations (VMRs) and vertical column densities (VCDs) are retrieved in ten different azimuthal directions.&lt;/p&gt;&lt;p&gt;The present work focuses on the seasonal horizontal variation of NO&lt;sub&gt;2 &lt;/sub&gt;and HCHO around the measurement site. The observations show a clear seasonal cycle of these trace gases. An important application of the dual-scan MAX-DOAS measurements is the validation of satellite missions with high spatial resolution, such as TROPOMI/S5P. Measuring the tropospheric &amp;#160;VCDs in different azimuthal directions is shown to improve the spatial colocation with satellite measurements leading to a better agreement between both datasets. By using &amp;#160;vertical profile information derived from the MAX-DOAS measurements, we show that a persistent systematic underestimation of the TROPOMI &amp;#160;data can be explained by uncertainties in the a-priori NO&lt;sub&gt;2&lt;/sub&gt; profile shape in the satellite retrieval. A similar validation study for TROPOMI HCHO is currently under progress and preliminary results will be presented.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;References:&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;Sinreich, R., Merten, A., Molina, L., and Volkamer, R.: Parameterizing radiative transfer to convert MAX-DOAS dSCDs into near-surface box-averaged mixing ratios, Atmos. Meas. Tech., 6, 1521&amp;#8211;1532, https://doi.org/10.5194/amt-6-1521-2013, 2013.&lt;/p&gt;


2020 ◽  
Author(s):  
Ermioni Dimitropoulou ◽  
François Hendrick ◽  
Gaia Pinardi ◽  
Martina M. Friedrich ◽  
Alexis Merlaud ◽  
...  

Abstract. Ground-based Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of aerosols and tropospheric nitrogen dioxide (NO2) were carried out in Uccle (50.8° N, 4.35° E) Brussels, during one year from March 2018 until March 2019. The instrument was operated in both UV and visible (Vis) wavelength ranges in a dual-scan configuration consisting of two sub-modes: (1) an elevation scan in a fixed viewing azimuthal direction (the so-called main azimuthal direction) pointing to the Northeast and (2) an azimuthal scan in a fixed low elevation angle (2°). By applying a vertical profile inversion algorithm in the main azimuthal direction and a parameterization technique in the other azimuthal directions, near-surface NO2 concentrations (VMRs) and vertical column densities (VCDs) were retrieved in ten different azimuthal directions. The dual-scan MAX-DOAS dataset allows partly resolving the horizontal distribution of NO2 around the measurement site and studying its seasonal variations. Furthermore, we show that measuring the tropospheric NO2 VCDs in different azimuthal directions improves the spatial colocation with measurements from the Sentinel-5 Precursor (S5P), leading to a reduction of the spread in validation results. By using NO2 vertical profile information derived from the MAX-DOAS measurements, we also resolve a systematic underestimation in S5P NO2 data due to the use of inadequate a-priori NO2 profile shape data in the satellite retrieval.


2013 ◽  
Vol 6 (10) ◽  
pp. 2907-2924 ◽  
Author(s):  
D. Mendolia ◽  
R. J. C. D'Souza ◽  
G. J. Evans ◽  
J. Brook

Abstract. Tropospheric NO2 vertical column densities have been retrieved and compared for the first time in Toronto, Canada, using three methods of differing spatial scales. Remotely sensed NO2 vertical column densities, retrieved from multi-axis differential optical absorption spectroscopy and satellite remote sensing, were evaluated by comparison with in situ vertical column densities estimated using a pair of chemiluminescence monitors situated 0.01 and 0.5 km a.g.l. (above ground level). The chemiluminescence measurements were corrected for the influence of NOz, which reduced the NO2 concentrations at 0.01 and 0.5 km by an average of 8 ± 1% and 12 ± 1%, respectively. The average absolute decrease in the chemiluminescence NO2 measurement as a result of this correction was less than 1 ppb. The monthly averaged ratio of the NO2 concentration at 0.5 to 0.01 km varied seasonally, and exhibited a negative linear dependence on the monthly average temperature, with Pearson's R = 0.83. During the coldest month, February, this ratio was 0.52 ± 0.04, while during the warmest month, July, this ratio was 0.34 ± 0.04, illustrating that NO2 is not well mixed within 0.5 km above ground level. Good correlation was observed between the remotely sensed and in situ NO2 vertical column densities (Pearson's R value ranging from 0.72 to 0.81), but the in situ vertical column densities were 52 to 58% greater than the remotely sensed columns. These results indicate that NO2 horizontal heterogeneity strongly impacted the magnitude of the remotely sensed columns. The in situ columns reflected an urban environment with major traffic sources, while the remotely sensed NO2 vertical column densities were representative of the region, which included spatial heterogeneity introduced by residential neighbourhoods and Lake Ontario. Despite the difference in absolute values, the reasonable correlation between the vertical column densities determined by three distinct methods increased confidence in the validity of the values provided by each measurement technique.


2021 ◽  
Vol 14 (4) ◽  
pp. 2941-2955
Author(s):  
David Garcia-Nieto ◽  
Nuria Benavent ◽  
Rafael Borge ◽  
Alfonso Saiz-Lopez

Abstract. Trace gases play a key role in the chemistry of urban atmospheres. Therefore, knowledge about their spatial distribution is needed to fully characterize air quality in urban areas. Using a new Multi-AXis Differential Optical Absorption Spectroscopy two-dimensional (MAXDOAS-2D) instrument, along with an inversion algorithm (bePRO), we report the first two-dimensional maps of nitrogen dioxide (NO2) and nitrous acid (HONO) concentrations in the city of Madrid, Spain. Measurements were made during 2 months (6 May–5 July 2019), and peak mixing ratios of 12 and 0.7 ppbv (parts per billion by volume) for NO2 and HONO, respectively, were observed in the early morning in the southern part of the downtown area. We found good general agreement between the MAXDOAS-2D mesoscale observations – which provide a typical spatial range of a few kilometers – and the in situ measurements provided by Madrid's air quality monitoring stations. In addition to vertical profiles, we studied the horizontal gradients of NO2 in the surface layer by applying the different horizontal light path lengths in the two spectral regions included in the NO2 spectral analysis: ultraviolet (UV, at 360 nm) and visible (VIS, 477 nm). We also investigate the sensitivity of the instrument to infer vertically distributed information on aerosol extinction coefficients and discuss possible future ways to improve the retrievals. The retrieval of two-dimensional distributions of trace gas concentrations reported here provides valuable spatial information for the study of air quality in the city of Madrid.


Sign in / Sign up

Export Citation Format

Share Document