scholarly journals Alternative Strategy for Estimating Zenith Tropospheric Delay from Precise Point Positioning

2017 ◽  
Author(s):  
Jareer Mohammed ◽  
Terry Moore ◽  
Chris Hill ◽  
Richard M. Bingley

Abstract. This study considered zenith total delay (ZTD) estimation from precise point positioning (PPP) based on GPS only (PPP GPS), GLONASS only (PPP GLO), and GPS+GLONASS (PPP GPS+GLO) using both a conventional strategy when applying a model for the hydrostatic component with an estimation of the wet component and an alternative strategy. The proposed alternative strategy is to estimate both the hydrostatic and the wet components of the tropospheric delay using different process noises with different mapping functions for both components in an extended Kalman filter (EKF). It was found that the receiver clock offsets and the estimated ambiguities would absorb some errors in the ZTD when using the conventional strategy. The RMS values of the differences between the double differenced (DD) GPS ZTD and the PPP ZTD, using the alternative strategy, were 6.5, 7.3, and 6.7 mm for PPP GPS, PPP GLO, and PPP GPS+GLO, respectively. The results were validated over one continuous week and then over one year. Validation was also performed through comparison with the IGS ZTD values, for 12 weeks, with an overall RMS of 5.9 mm and against IGS real-time products with an overall RMS of 8.1 mm. Furthermore, the alternative strategy also provided significant improvements in the 5 cm convergence time in the vertical coordinate component of the float ambiguity solutions to be on average, 51, 36 and 27 minutes for PPP GPS, PPP GLO and PPP GPS+GLO solutions respectively.

2020 ◽  
Vol 12 (18) ◽  
pp. 3080
Author(s):  
Jinglei Zhang ◽  
Xiaoming Wang ◽  
Zishen Li ◽  
Shuhui Li ◽  
Cong Qiu ◽  
...  

Global navigation satellite systems (GNSSs) have become an important tool to derive atmospheric products, such as the total zenith tropospheric delay (ZTD) and precipitable water vapor (PWV) for weather and climate studies. The ocean tide loading (OTL) effect is one of the primary errors that affects the accuracy of GNSS-derived ZTD/PWV, which means the study and choice of the OTL model is an important issue for high-accuracy ZTD estimation. In this study, GNSS data from 1 January 2019 to 31 January 2019 are processed using precise point positioning (PPP) at globally distributed stations. The performance of seven widely used global OTL models is assessed and their impact on the GNSS-derived ZTD is investigated by comparing them against the ZTD calculated from co-located radiosonde observations. The results indicate that the inclusion or exclusion of the OTL effect will lead to a difference in ZTD of up to 3–15 mm for island stations, and up to 1–2 mm for inland stations. The difference of the ZTD determined with different OTL models is quite small, with a root-mean-square (RMS) value below 1.5 mm at most stations. The comparison between the GNSS-derived ZTD and the radiosonde-derived ZTD indicates that the adoption of OTL models can improve the accuracy of GNSS-derived ZTD. The results also indicate that the adoption of a smaller cutoff elevation, e.g., 3° or 7°, can significantly reduce the difference between the ZTDs determined by GNSS and radiosonde, when compared against a 15° cutoff elevation. Compared to the radiosonde-derived ZTD, the RMS error of GNSS-derived ZTD is approximately 25–35 mm at a cutoff elevation of 15°, and 15–25 mm when the cutoff elevation is set to 3°.


2020 ◽  
Vol 73 (4) ◽  
pp. 763-775 ◽  
Author(s):  
Wenjie Zhang ◽  
Hongzhen Yang ◽  
Chen He ◽  
Zhiqiang Wang ◽  
Weiping Shao ◽  
...  

This paper presents an investigation of the precise point positioning (PPP) performance of a combined solution from BDS-2 and BDS-3 satellites. To simultaneously process different BDS signal observations, i.e., B1/B1C, B2/B2a and B3C, undifferenced and uncombined observations with ionosphere delay constrained by the deterministic plus stochastic ionosphere model are used in the basic model. Special attention is paid to code bias and receiver clock parameters in the derivation of the observation model. The analysis is carried out using more than one-month data for BDS-2 and BDS-3 collected at the CANB, DWIN, KNDY and PETH stations in the Asia-Pacific region. The results suggest that compared with BDS-2 alone, the BDS-2 and BDS-3 solution provides significantly more accurate PPP, with increases of 28%, 21% and 5% in the up, north and east directions, respectively. In addition, the average root mean square error decreases to 0·21, 0·13 and 0·16 m for the three directions. Furthermore, the PPP convergence time for BDS-2 and BDS-3 is about 1·5 h and less than 1 h for the horizontal and vertical components, respectively, whereas that for BDS-2 alone is about 2·3 h for both directions.


2019 ◽  
Vol 9 (24) ◽  
pp. 5407 ◽  
Author(s):  
Ren Wang ◽  
Jingxiang Gao ◽  
Nanshan Zheng ◽  
Zengke Li ◽  
Yifei Yao ◽  
...  

An increasing number of researchers have conducted in-depth research on the advantages of low-cost single-frequency (SF) receivers, which can effectively use ionospheric information when compared to dual-frequency ionospheric-free combination. However, SF observations are bound to increase the unknown parameters and prolong the convergence time. It is desirable if the convergence time can be reduced by external information constraints, for example atmospheric constraints, which include ionosphere- or troposphere constraints. In this study, ionospheric delay constraints, tropospheric delay constraints, and their dual constraints were considered. Additionally, a total of 18,720 test experiments were performed. First, the nearest-neighbor extrapolation (NENE), bilinear- (BILI), bicubic- (BICU), and Junkins weighted-interpolation (JUNK) method of Global Ionospheric Map (GIM) grid products were analyzed. The statistically verified BILI in the percentage of convergence time, average convergence time, and computation time consumption of them shows a good advantage. Next, the influences of global troposphere- and ionosphere-constrained on the convergence time of SF Precise Point Positioning (PPP) were analyzed. It is verified that the ionosphere-constrained (TIC2) has significant influence on the convergence time in the horizontal and vertical components, while the troposphere-constrained (TIC1) has better effect on the convergence time in the vertical components within some thresholds. Of course, the dual constraint (TIC3) has the shortest average convergence time, which is at least 46.5% shorter in static mode and 5.4% in kinematic mode than standard SF PPP (TIC0).


Sign in / Sign up

Export Citation Format

Share Document