scholarly journals Advanced method for estimating the number concentration of cloud water and liquid water content observed by cloud particle sensor sondes

2021 ◽  
Author(s):  
Jun Inoue ◽  
Kazutoshi Sato ◽  
Yutaka Tobo ◽  
Fumikazu Taketani ◽  
Marion Maturilli

Abstract. A cloud particle sensor (CPS) sonde is an observing system attached with a radiosonde sensor to observe the vertical structure of cloud properties. The signals obtained from CPS sondes are related to the phase, size, and number of cloud particles. The system offers economic advantages including human resource and simple operation costs compared with aircraft measurements and land-/satellite-based remote sensing. However, because CPS systems are limited for data downlink to land stations, the observed information should be appropriately corrected. We launched approximately 40 CPS sondes in the Arctic region between 2018 and 2020 and use these data sets to develop correction methods that exclude unreliable data, estimate the effective cloud water droplet radius, and determine a correction factor for the total cloud particle count. We apply this method to data obtained in October 2019 over the Arctic Ocean and March 2020 at Ny-Alesund, Svalbard, Norway to compare with a particle counter onboard a tethered balloon and liquid water content retrieved by a microwave radiometer. The estimated total particle count and liquid water content from the CPS sondes generally agree with those data, which exemplifies the promising advantages of this approach to retrieve quantitative and meaningful information on the vertical distribution of cloud microphysics.

2021 ◽  
Vol 14 (7) ◽  
pp. 4971-4987
Author(s):  
Jun Inoue ◽  
Yutaka Tobo ◽  
Kazutoshi Sato ◽  
Fumikazu Taketani ◽  
Marion Maturilli

Abstract. A cloud particle sensor (CPS) sonde is an observing system attached with a radiosonde sensor to observe the vertical structure of cloud properties. The signals obtained from CPS sondes are related to the phase, size, and number of cloud particles. The system offers economic advantages including human resource and simple operation costs compared with aircraft measurements and land-/satellite-based remote sensing. However, the observed information should be appropriately corrected because of several uncertainties. Here we made field experiments in the Arctic region by launching approximately 40 CPS sondes between 2018 and 2020. Using these data sets, a better practical correction method was proposed to exclude unreliable data, estimate the effective cloud water droplet radius, and determine a correction factor for the total cloud particle count. We apply this method to data obtained in October 2019 over the Arctic Ocean and March 2020 at Ny-Ålesund, Svalbard, Norway, to compare with a particle counter aboard a tethered balloon and liquid water content retrieved by a microwave radiometer. The estimated total particle count and liquid water content from the CPS sondes generally agree with those data. Although further development and validation of CPS sondes based on dedicated laboratory experiments would be required, the practical correction approach proposed here would offer better advantages in retrieving quantitative information on the vertical distribution of cloud microphysics under the condition of a lower number concentration.


2014 ◽  
Vol 53 (6) ◽  
pp. 1606-1617 ◽  
Author(s):  
Kathleen F. Jones ◽  
Gregory Thompson ◽  
Keran J. Claffey ◽  
Eric P. Kelsey

AbstractThe liquid water content and drop diameters in supercooled clouds have been measured since the 1940s at the summit of Mount Washington in New Hampshire using a rotating multicylinder. Many of the cloud microphysics models in the Weather Research and Forecasting Model (WRF) assume a gamma distribution for cloud drops. In this paper, years of multicylinder data are reanalyzed to determine the best-fitting gamma or monodisperse distribution to compare with parameters in the WRF cloud models. The single-moment cloud schemes specify a predetermined and constant drop number density in clouds, which leads to a fixed relationship between the median volume drop diameter and the liquid water content. The Mount Washington drop number densities are generally larger and best-fit distributions are generally narrower than is typically assumed in WRF.


Author(s):  
Dan Wu ◽  
Fuqing Zhang ◽  
Xiaomin Chen ◽  
Alexander Ryzhkov ◽  
Kun Zhao ◽  
...  

AbstractCloud microphysics significantly impact tropical cyclone precipitation. A prior polarimetric radar observational study by Wu et al. (2018) revealed the ice-phase microphysical processes as the dominant microphysics mechanisms responsible for the heavy precipitation in the outer rainband of Typhoon Nida (2016). To assess the model performance regarding microphysics, three double-moment microphysics schemes (i.e., Thompson, Morrison, and WDM6) are evaluated by performing a set of simulations of the same case. While these simulations capture the outer rainband’s general structure, microphysics in the outer rainbands are strikingly different from the observations. This discrepancy is primarily attributed to different microphysics parameterizations in these schemes, rather than the differences in large-scale environments due to cloud-environment interactions. An interesting finding in this study is that the surface rain rate or liquid water content is inversely proportional to the simulated mean raindrop sizes. The mass-weighted raindrop diameters are overestimated in the Morrison and Thompson schemes and underestimated in the WDM6 scheme, while the former two schemes produce lower liquid water content than WDM6. Compared with the observed ice water content based on a new polarimetric radar retrieval method, the ice water content above the environmental 0 °C level in all simulations is highly underestimated, especially at heights above 12 km MSL where large concentrations of small ice particles are typically prevalent. This finding suggests that the improper treatment of ice-phase processes is potentially an important error source in these microphysics schemes. Another error source identified in the WDM6 scheme is overactive warm-rain processes that produce excessive concentrations of smaller raindrops.


2019 ◽  
Vol 19 (3) ◽  
pp. 1413-1437 ◽  
Author(s):  
Yajuan Duan ◽  
Markus D. Petters ◽  
Ana P. Barros

Abstract. A new cloud parcel model (CPM) including activation, condensation, collision–coalescence, and lateral entrainment processes is used to investigate aerosol–cloud interactions (ACIs) in cumulus development prior to rainfall onset. The CPM was applied with surface aerosol measurements to predict the vertical structure of cloud development at early stages, and the model results were evaluated against airborne observations of cloud microphysics and thermodynamic conditions collected during the Integrated Precipitation and Hydrology Experiment (IPHEx) in the inner region of the southern Appalachian Mountains (SAM). Sensitivity analysis was conducted to examine the model response to variations in key ACI physiochemical parameters and initial conditions. The CPM sensitivities mirror those found in parcel models without entrainment and collision–coalescence, except for the evolution of the droplet spectrum and liquid water content with height. Simulated cloud droplet number concentrations (CDNCs) exhibit high sensitivity to variations in the initial aerosol concentration at cloud base, but weak sensitivity to bulk aerosol hygroscopicity. The condensation coefficient ac plays a governing role in determining the evolution of CDNC, liquid water content (LWC), and cloud droplet spectra (CDS) in time and with height. Lower values of ac lead to higher CDNCs and broader CDS above cloud base, and higher maximum supersaturation near cloud base. Analysis of model simulations reveals that competitive interference among turbulent dispersion, activation, and droplet growth processes modulates spectral width and explains the emergence of bimodal CDS and CDNC heterogeneity in aircraft measurements from different cloud regions and at different heights. Parameterization of nonlinear interactions among entrainment, condensational growth, and collision–coalescence processes is therefore necessary to simulate the vertical structures of CDNCs and CDSs in convective clouds. Comparisons of model predictions with data suggest that the representation of lateral entrainment remains challenging due to the spatial heterogeneity of the convective boundary layer and the intricate 3-D circulations in mountainous regions.


2020 ◽  
Author(s):  
Philipp Richter ◽  
Mathias Palm ◽  
Christine Weinzierl ◽  
Hannes Griesche ◽  
Penny M. Rowe ◽  
...  

Abstract. Infrared spectral radiances of optically thin clouds show high sensitivity to changes of the microphysical cloud parameters. Therefore, measurements of infrared spectral radiance of clouds in the spectral range from 770.9 cm−1 to 1163.4 cm−1 using a mobile Fourier Transform Infrared spectrometer were performed on the German research vessel Polarstern in the Arctic in summer 2017. A new retrieval for microphysical cloud parameters of optically thin clouds called Total Cloud Water retrieval, designed to retrieve cloud water optical depth τcw, total effective droplet radius rtotal and condensed water path CWP from infrared spectral radiances without the incorporation of spectral radiances in the far-infrared below 600cm−1, has been developed for application on radiances from the measurement campaign. Validation is performed against derived quantities from a combined cloud radar, lidar and microwave radiometer measurement synergy retrieval, called Cloudnet, performed by the Leibnitz Institute for Trospheric Research. Applied to spectral radiances of synthetic testcases, Total Cloud Water retrieval shows a high ability to retrieve τcw with a correlation of |r| = 0.98, as well as to retrieve CWP with |r| = 0.95 and rtotal with |r| = 0.86. Using the dataset from the campaign, a comparison between CWP from Total Cloud Water retrieval and Cloudnet was performed and showed a correlation of |r| = 0.81. In conclusion, the comparison to artificial clouds and the validation using Cloudnet showed that Total Cloud Water retrieval is able to retrieve the condensed water path from clouds for optically thin clouds and makes it a useful complementation for thin clouds to existing microwave-based measurements.


2011 ◽  
Vol 5 (4) ◽  
pp. 2197-2252 ◽  
Author(s):  
I. Gouttevin ◽  
G. Krinner ◽  
P. Ciais ◽  
J. Polcher ◽  
C. Legout

Abstract. Soil freezing is a major feature of boreal regions with substantial impact on climate. The present paper describes the implementation of the thermal and hydrological effects of soil freezing in the land surface model ORCHIDEE, which includes a physical description of continental hydrology. The new soil freezing scheme is evaluated against analytical solutions and in-situ observations at a variety of scales in order to test its numerical robustness, explore its sensitivity to parameterization choices and confront its performances to field measurements at typical application scales. It is shown that the appropriate vertical discretization to represent the thermal freezing dynamics is centimetric, and the appropriate freezing window is 1 to 2 °C wide. Furthermore, linear and thermodynamical parameterizations of the liquid water content lead to similar results in terms of water redistribution within the soil as a consequence of freezing. The new soil freezing scheme considerably improves the representation of runoff and river discharge in regions underlain by permafrost and subject to seasonal freezing. A thermodynamical parameterization of the liquid water content appears more appropriate for an integrated description of the hydrological processes at the scale of the vast Siberian basins. The use of a subgrid variability approach and the representation of wetlands could help capturing the features of the Arctic hydrological regime with more accuracy. The modelling of the soil thermal regime is generally improved by the representation of soil freezing processes. In particular, the dynamics of the active layer is captured with an increased accuracy by the soil freezing module, which is of crucial importance in the prospect of simulations involving the response of frozen carbon stocks to future warming. A realistic simulation of the snow cover and its thermal properties, as well as the representation of an organic horizon with specific thermal characteristics, are confirmed to be a pre-requisite for an accurate modelling of the soil thermal dynamics in the Arctic.


2021 ◽  
Author(s):  
Fritz Waitz ◽  
Martin Schnaiter ◽  
Thomas Leisner ◽  
Emma Järvinen

Abstract. Mixed-phase clouds consist of both supercooled liquid water droplets and solid ice crystals. Despite having a significant impact on Earth‘s climate, mixed-phase clouds are poorly understood and not well represented in climate prediction models. One piece of the puzzle is understanding and parameterizing riming of mixed-phase cloud ice crystals, which is one of the main growth mechanisms of ice crystals via the accretion of small, supercooled droplets. Especially the extent of riming on ice crystals smaller than 500 μm is often overlooked in studies – mainly because observations are scarce. Here, we investigated riming in mixed-phase clouds during three airborne campaigns in the Arctic, the Southern Ocean and US east coast. Riming was observed from stereo-microscopic cloud particle images recorded with the Particle Habit Imaging and Polar Scattering (PHIPS) probe. We show that riming is most prevalent at temperatures around −7 °C, where, on average, 43 % of the investigated particles in a size range from 100 ≤ D ≤ 700 μm showed evidence of riming. We discuss the occurrence and properties of rimed ice particles and show correlation of the occurrence and the amount of riming with ambient meteorological parameters. We show that riming fraction increases with ice particle size (< 20 % for D ≤ 200 μm, 35–40 % for D ≥ 400 μm) and liquid water content (25 % for LWC ≤ 0.05 g m−3, up to 60 % for LWC = 0.5 g m−3). We investigate the ageing of rimed particles and the difference between "normal" and "epitaxial" riming based on a case study.


Sign in / Sign up

Export Citation Format

Share Document