error source
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 28)

H-INDEX

11
(FIVE YEARS 1)

2022 ◽  
Vol 14 (1) ◽  
pp. 168781402110729
Author(s):  
Wanhua Zhao ◽  
Zhuang Liu ◽  
Yong Yang ◽  
Zheng Zou ◽  
Ruizhi Shu ◽  
...  

By considering the uncertainness of initial measuring position of encoders and signal sidebands caused by the fault gear pair, this paper presented a new comprehensive harmonic analysis method for the transmission error of gear hobbing machine. Based on that, a test platform was established, in which two circle grating encoders were connected to the hob spindle and workpiece spindle respectively. With the help of this new harmonic analysis method as well as the self-developed test platform, a new improved transmission error fault diagnosis method was developed for the gear hobbing machines. To verify its accountability, a case study was conducted on a YS-type gear hobbing machine. According to the spectrum amplitude comparison and the analysis of harmonic frequency distribution, the fault transmission gear pair was successfully located. This improved transmission error source tracing method was very helpful for quantifying both the manufacturing qualities and assembly qualities of parts and locating potential error source for new gear hobbing machines.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3086
Author(s):  
Zhen Guo ◽  
Zengfu Wang ◽  
Yuhang Hao ◽  
Hua Lan ◽  
Quan Pan

In the target localization of skywave over-the-horizon radar (OTHR), the error of the ionospheric parameters is one main error source. To reduce the error of ionospheric parameters, a method using both the information of reference sources (e.g., terrain features, ADS-B) in ground coordinates and the corresponding OTHR measurements is proposed to estimate the ionospheric parameters. Describing the ionospheric electron density profile by the quasi-parabolic model, the estimation of the ionospheric parameters is formulated as an inverse problem, and is solved by a Markov chain Monte Carlo method due to the complicated ray path equations. Simulation results show that, comparing with using the a prior value of the ionospheric parameters, using the estimated ionospheric parameters based on four airliners in OTHR coordinate registration process, the ground range RMSE of interested targets is reduced from 2.86 to 1.13 km and the corresponding improvement ratio is up to 60.39%. This illustrates that the proposed method using reference sources is able to significantly improve the accuracy of target localization.


2021 ◽  
Author(s):  
Yucheng Liu ◽  
Lawrence Ong ◽  
Sarah Johnson ◽  
Joerg Kliewer ◽  
Parastoo Sadeghi ◽  
...  

Author(s):  
Homa Ansari ◽  
Francesco De Zan ◽  
Alessandro Parizzi
Keyword(s):  

2021 ◽  
Vol 18 (8) ◽  
pp. 20210103-20210103
Author(s):  
Shiqiang Nie ◽  
Chi Zhang ◽  
Chen Zhang ◽  
Xuda Zheng ◽  
Weiguo Wu

Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 338
Author(s):  
Cemanur Aydinalp ◽  
Sulayman Joof ◽  
Tuba Yilmaz

Dielectric properties of biological materials are commonly characterized with open-ended coaxial probes due to the broadband and non-destructive measurement capabilities. Recently, potential diagnostics applications of the technique have been investigated. Although the technique can successfully classify the tissues with different dielectric properties, the classification accuracy can be improved for tissues with similar dielectric properties. Increase in classification accuracy can be achieved by addressing the error sources. One well-known error source contributing to low measurement accuracy is tissue heterogeneity. To mitigate this error source, there is a need define the probe sensing depth. Such knowledge can enable application-specific probe selection or design. The sensing depth can also be used as an input to the classification algorithms which can potentially improve the tissue classification accuracy. Towards this goal, this work investigates the sensing depth of a commercially available 2.2 mm aperture diameter probe with double-layered configurations using ex vivo rat breast and skin tissues. It was concluded that the dielectric property contrast between the heterogeneous tissue components has an effect on the sensing depth. Also, a membrane layer (between 0.4–0.8 mm thickness) on the rat wet skin tissue and breast tissue will potentially affect the dielectric property measurement results by 52% to 84%.


Author(s):  
Dan Wu ◽  
Fuqing Zhang ◽  
Xiaomin Chen ◽  
Alexander Ryzhkov ◽  
Kun Zhao ◽  
...  

AbstractCloud microphysics significantly impact tropical cyclone precipitation. A prior polarimetric radar observational study by Wu et al. (2018) revealed the ice-phase microphysical processes as the dominant microphysics mechanisms responsible for the heavy precipitation in the outer rainband of Typhoon Nida (2016). To assess the model performance regarding microphysics, three double-moment microphysics schemes (i.e., Thompson, Morrison, and WDM6) are evaluated by performing a set of simulations of the same case. While these simulations capture the outer rainband’s general structure, microphysics in the outer rainbands are strikingly different from the observations. This discrepancy is primarily attributed to different microphysics parameterizations in these schemes, rather than the differences in large-scale environments due to cloud-environment interactions. An interesting finding in this study is that the surface rain rate or liquid water content is inversely proportional to the simulated mean raindrop sizes. The mass-weighted raindrop diameters are overestimated in the Morrison and Thompson schemes and underestimated in the WDM6 scheme, while the former two schemes produce lower liquid water content than WDM6. Compared with the observed ice water content based on a new polarimetric radar retrieval method, the ice water content above the environmental 0 °C level in all simulations is highly underestimated, especially at heights above 12 km MSL where large concentrations of small ice particles are typically prevalent. This finding suggests that the improper treatment of ice-phase processes is potentially an important error source in these microphysics schemes. Another error source identified in the WDM6 scheme is overactive warm-rain processes that produce excessive concentrations of smaller raindrops.


2021 ◽  
Vol 29 (8) ◽  
pp. 1751-1758
Author(s):  
Zhuang-zhuang MU ◽  
◽  
qiang ZHAO ◽  
Jin LI ◽  
Fan-li MENG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document