particle count
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 74)

H-INDEX

11
(FIVE YEARS 3)

Detritus ◽  
2021 ◽  
pp. 58-70
Author(s):  
Martijn van Praagh ◽  
Bettina Liebmann

We investigated the occurrence of microplastics (size range 5,000-50 µm) in leachates at 11 landfills of different age and operational status in Finland, Iceland and Norway. Collective sampling was carried out by pumping leachate with a stainless-steel submergible pump through a custom-made, stainless-steel filter unit containing filter plates with decreasing pore sizes (5,000, 417 and 47 µm, respectively). Samples were pre-treated and split into particles size classes above 500 μm and above 50 μm, and screened for occurrence of microplastics made of PE, PP, PVC, PS, PET, PA, PU, PC, PMMA, POM, SBR (rubber) or PMB (polymer modified bitumen). Samples were analysed by FT-IR spectroscopy, both to identify and to count microplastic particles (SBR and PMB were merely identified). Most samples tested positive for multiple microplastics. Three leachates, including drinking water (blank), tested positive for SBR particles and/or PMB only. Treated leachate samples exhibited lower total microplastic’s counts than untreated, up to several orders of magnitude. National waste management practices over time, landfill age or operational status do not seem to explain differences in microplastic abundance or counts between leachates. Particle count and calculated loads of microplastic emissions through leachates differed several orders of magnitude between landfills. Results indicate that landfill leachates might be a relatively small source of microplastics (>50 µm) to surface waters compared to untreated and treated sewage or road runoff. Continued data acquisition, improved sample preparation and understanding of variability of microplastics in landfill leachate are necessary, including particles smaller than 50 µm.


2021 ◽  
Author(s):  
Varaha Ravi Kiran ◽  
Madineni Venkat Ratnam ◽  
Masatomo Fujiwara ◽  
Herman Russchenberg ◽  
Frank G. Wienhold ◽  
...  

Abstract. Better understanding of aerosol-cloud interaction processes is an important aspect to quantify the role of clouds and aerosols in the climate system. There have been significant efforts to explain the ways aerosols modulate cloud properties. However, from the observational point of view, it is indeed challenging to observe and/or verify some of these processes because no single instrument or platform is proven sufficient. With this motivation, a unique set of observational field campaigns named Balloon borne Aerosol Cloud Interaction Studies (BACIS) is proposed and conducted using balloon borne in-situ measurements in addition to the ground-based (Lidars, MST radar, LAWP, MWR, Ceilometer) and space borne (CALIPSO) remote sensing instruments from Gadanki (13.45° N, 79.2° E). So far, 15 campaigns have been conducted as a part of BACIS campaigns from 2017 to 2020. This paper presents the concept of observational approach, lists the major objectives of the campaigns, describes the instruments deployed, and discusses results from selected campaigns. Consistency in balloon borne measurements is assessed using the data from simultaneous observations of ground-based, space borne remote sensing instruments. A good agreement is found among multi-instrumental observations. Balloon borne in-situ profiling is found to complement the information provided by ground-based and/or space borne measurements. A combination of the Compact Optical Backscatter AerosoL Detector (COBALD) and Cloud Particle Sensor (CPS) sonde is employed for the first time to discriminate cloud and aerosol in an in-situ profile. A threshold value of COBALD color index (CI) for ice clouds is found to be between 18 and 20 and CI values for coarse mode aerosol particle range between 11 and 15. Using the data from balloon measurements, the relationship between cloud and aerosol is quantified for the liquid clouds. A statistically significant slope (aerosol-cloud interaction index) of 0.77 (0.86) found between aerosol back scatter from 300 m (400 m) below the cloud base and cloud particle count within the cloud indicates the role of aerosol in the cloud activation process. In a nutshell, the results presented here demonstrate the observational approach to quantify aerosol-cloud interactions and paves the way for further investigations using the approach.


2021 ◽  
Author(s):  
Jari E Karppinen ◽  
Timo Tormakangas ◽  
Urho M Kujala ◽  
Sarianna Sipila ◽  
Jari Laukkanen ◽  
...  

Aims: We studied the changes in the circulating metabolome and their relation to the menopausal hormonal shift in 17β-oestradiol and follicle-stimulating hormone levels among women transitioning from perimenopause to early postmenopause. Methods and Results: We analysed longitudinal data from 218 Finnish women, 35 of whom started menopausal hormone therapy during the study. The menopausal transition was monitored with menstrual diaries and serum hormone measurements. The median follow-up was 14 months (interquartile range: 8–20). Serum metabolites were quantified with targeted nuclear magnetic resonance metabolomics. The model results were adjusted for age, follow-up duration, education, lifestyle, and multiple comparisons. Menopause was associated with 84 metabolite measures. The concentration of apoB (0.17 standard deviation [SD], 99.5% confidence interval [CI] 0.03–0.31), VLDL triglycerides (0.25 SD, CI 0.05–0.45) and particles (0.21 SD, CI 0.05–0.36), LDL cholesterol (0.17 SD, CI 0.01–0.34) and particles (0.17 SD, CI 0.03–0.31), HDL triglycerides (0.24 SD, CI 0.02–0.46), glycerol (0.32 SD, CI 0.07–0.58) and leucine increased (0.25 SD, CI 0.02–0.49). Citrate (-0.36 SD, CI -0.57 to -0.14) and 3-hydroxybutyrate concentrations decreased (-0.46 SD, CI -0.75 to -0.17). Most metabolite changes were associated with the menopausal hormonal shift. This explained 10% and 9% of the LDL cholesterol and particle concentration increase, respectively. Menopausal hormone therapy was associated with increased medium-to-large HDL particle count and decreased small-to-medium LDL particle and glycine concentration. Conclusions: Menopause is associated with proatherogenic circulating metabolome alterations. Female sex hormones levels are connected to the alterations, highlighting their impact on women's cardiovascular health.


2021 ◽  
Vol 13 (12) ◽  
pp. 5803-5817
Author(s):  
Mark W. Seefeldt ◽  
Taydra M. Low ◽  
Scott D. Landolt ◽  
Thomas H. Nylen

Abstract. The Antarctic Precipitation System project deployed and maintained four sites across the northwestern Ross Ice Shelf in Antarctica from November 2017 to November 2019. The goals for the project included the collection of in situ observations of precipitation in Antarctica spanning a duration of 2 years, an improvement in the understanding of precipitation events across the Ross Ice Shelf, and the ability to validate precipitation data from atmospheric numerical models. At each of the four sites the precipitation was measured with an OTT Pluvio2 precipitation gauge. Additionally, snow accumulation at the site was measured with a sonic ranging sensor and using GPS interferometric reflectivity. Supplemental observations of temperature, wind speed, particle count, particle size and speed, and images and video from a camera were collected to provide context to the precipitation measurements. The collected dataset represents some of the first year-round observations of precipitation in Antarctica at remote locations using an autonomous measurement system. The acquired observations have been quality-controlled and post-processed, and they are available for retrieval through the United States Antarctic Program Data Center (https://doi.org/10.15784/601441, Seefeldt, 2021).


Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1617
Author(s):  
Romana Klasinc ◽  
Michael Reiter ◽  
Astrid Digruber ◽  
Waltraud Tschulenk ◽  
Ingrid Walter ◽  
...  

Chlamydia trachomatis is an obligate intracellular pathogenic bacterium with a biphasic developmental cycle manifesting two distinct morphological forms: infectious elementary bodies (EBs) and replicative intracellular reticulate bodies (RBs). Current standard protocols for quantification of the isolates assess infectious particles by titering inclusion-forming units, using permissive cell lines, and analyzing via immunofluorescence. Enumeration of total particle counts is achieved by counting labeled EBs/RBs using a fluorescence microscope. Both methods are time-consuming with a high risk of observer bias. For a better assessment of C. trachomatis preparations, we developed a simple and time-saving flow cytometry-based workflow for quantifying small particles, such as EBs with a size of 300 nm. This included optimization of gain and threshold settings with the addition of a neutral density filter for small-particle discrimination. The nucleic acid dye SYBR® Green I (SGI) was used together with propidium iodide and 5(6)-carboxyfluorescein diacetate to enumerate and discriminate between live and dead bacteria. We found no significant differences between the direct particle count of SGI-stained C. trachomatis preparations measured by microscopy or flow cytometry (p > 0.05). Furthermore, we completed our results by introducing a cell culture-independent viability assay. Our measurements showed very good reproducibility and comparability to the existing state-of-the-art methods, indicating that the evaluation of C. trachomatis preparations by flow cytometry is a fast and reliable method. Thus, our method facilitates an improved assessment of the quality of C. trachomatis preparations for downstream applications.


2021 ◽  
Vol 21 (23) ◽  
pp. 17953-17967
Author(s):  
Qi En Zhong ◽  
Chunlei Cheng ◽  
Zaihua Wang ◽  
Lei Li ◽  
Mei Li ◽  
...  

Abstract. The mixing states of particulate amines with different chemical components are of great significance in studying the formation and evolution processes of amine-containing particles. In this work, the mixing states of single particles containing trimethylamine (TMA) and diethylamine (DEA) are investigated using a high-performance single-particle aerosol mass spectrometer located in Nanjing, China, in September 2019. TMA- and DEA-containing particles accounted for 22.8 % and 5.5 % of the total detected single particles, respectively. The particle count and abundance of the TMA-containing particles in the total particles notably increased with enhancement of ambient relative humidity (RH), while the DEA-containing particles showed no increase under a high RH. This result suggested the important role of RH in the formation of particulate TMA. Significant enrichments of secondary organic species, including 43C2H3O+, 26CN−, 42CNO−, 73C3H5O2-, and 89HC2O4-, were found in DEA-containing particles, indicating that DEA-containing particles were closely associated with the aging of secondary organics. The differential mass spectra of the DEA-containing particles showed a much higher abundance of nitrate and organic nitrogen species during the nighttime than during the daytime, which suggested that the nighttime production of particulate DEA might be associated with reactions of gaseous DEA with HNO3 and/or particulate nitrate. In the daytime, the decrease in DEA-containing particles was observed with the enrichment of oxalate and glyoxylate, which suggested a substantial impact of photochemistry on the aging process of DEA-containing particles. Furthermore, more than 80 % of TMA- and DEA-containing particles internally mixed with nitrate, while the abundance of sulfate was higher in the DEA-containing particles (79.3 %) than in the TMA-containing particles (55.3 %). This suggested that particulate DEA existed both as nitrate and sulfate aminium salts, while the particulate TMA primarily presented as nitrate aminium salt. The different mixing states of the TMA- and DEA-containing particles suggested their different formation processes and various influencing factors, which are difficult to investigate using bulk analysis. These results provide insights into the discriminated fates of organics during the evolution process in aerosols, which helps to illustrate the behavior of secondary organic aerosols.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 964
Author(s):  
Joon-seok Kang ◽  
Jayeong Seong ◽  
Jewan Yoo ◽  
Pooreum Kim ◽  
Kitae Park ◽  
...  

The optimal operating conditions of a combined dissolved air flotation (DAF)-microfiltration (MF) process to respond to changes in raw water quality were investigated by operating a pilot plant for two years. Without DAF pre-treatment (i.e., MF alone), MF operated stably with a transmembrane pressure (TMP) increase of 0.24 kPa/d when the turbidity of raw water was low and stable (max. 13.4 NTU). However, as the raw water quality deteriorated (max. 76.9 NTU), the rate of TMP increase reached 43.5 kPa/d. When DAF pre-treatment was applied (i.e., the combined DAF-MF process), the MF process operated somewhat stably; however, the rate of TMP increase was relatively high (i.e., 0.64 kPa/d). Residual coagulants and small flocs were not efficiently separated by the DAF process, exacerbating membrane fouling. Based on the particle count analysis of the DAF effluent, the DAF process was optimised based on the coagulant dose and hydraulic loading rate. After optimisation, the rate of TMP increase for the MF process stabilised at 0.17 kPa/d. This study demonstrates that the combined DAF-MF process responded well to substantial changes in raw water quality. In addition, it was suggested that the DAF process must be optimised to avoid excessive membrane fouling.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259745
Author(s):  
Ching-Hsuan Huang ◽  
Jiayang He ◽  
Elena Austin ◽  
Edmund Seto ◽  
Igor Novosselov

Low-cost optical scattering particulate matter (PM) sensors report total or size-specific particle counts and mass concentrations. The PM concentration and size are estimated by the original equipment manufacturer (OEM) proprietary algorithms, which have inherent limitations since particle scattering depends on particles’ properties such as size, shape, and complex index of refraction (CRI) as well as environmental parameters such as temperature and relative humidity (RH). As low-cost PM sensors are not able to resolve individual particles, there is a need to characterize and calibrate sensors’ performance under a controlled environment. Here, we present improved calibration algorithms for Plantower PMS A003 sensor for mass indices and size-resolved number concentration. An aerosol chamber experimental protocol was used to evaluate sensor-to-sensor data reproducibility. The calibration was performed using four polydisperse test aerosols. The particle size distribution OEM calibration for PMS A003 sensor did not agree with the reference single particle sizer measurements. For the number concentration calibration, the linear model without adjusting for the aerosol properties and environmental conditions yields an absolute error (NMAE) of ~ 4.0% compared to the reference instrument. The calibration models adjusted for particle CRI and density account for non-linearity in the OEM’s mass concentrations estimates with NMAE within 5.0%. The calibration algorithms developed in this study can be used in indoor air quality monitoring, occupational/industrial exposure assessments, or near-source monitoring scenarios where field calibration might be challenging.


2021 ◽  
Vol 22 (19) ◽  
pp. 10538
Author(s):  
Yassine Bouattour ◽  
Florent Neflot-Bissuel ◽  
Mounir Traïkia ◽  
Anne-Sophie Biesse-Martin ◽  
Robin Frederic ◽  
...  

Ceftazidime (CZ) and vancomycin (VA) are two antibiotics used to treat bacterial keratitis. Due to their physical incompatibility (formation of a precipitate), it is not currently possible to associate both molecules in a single container for ophthalmic administration. We firstly characterized the incompatibility then investigated if 2-hydroxypropyl-beta (HPβCD) and 2-hydroxypropyl-gamma cyclodextrins (HPγCD) could prevent this incompatibility. The impact of pH on the precipitation phenomena was investigated by analysing the supernatant solution of the mixture using high performance liquid chromatography. A characterization of the inclusion of CZ with HPγCD using 1H nuclear magnetic resonance (NMR), and VA with HPβCD using 1H-NMR and a solubility diagram was performed. A design of experiment was built to determine the optimal conditions to obtain a formulation that had the lowest turbidity and particle count. Our results showed that VA and CZ form an equimolar precipitate below pH 7.3. The best formulation obtained underwent an in-vitro evaluation of its antibacterial activity. The impact of HPCDs on incompatibility has been demonstrated through the inclusion of antibiotics and especially VA. The formulation has been shown to be able to inhibit the incompatibility for pH higher than 7.3 and to possess unaltered antibacterial activity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sima Asadi ◽  
Manilyn J. Tupas ◽  
Ramya S. Barre ◽  
Anthony S. Wexler ◽  
Nicole M. Bouvier ◽  
...  

AbstractAnimal models are often used to assess the airborne transmissibility of various pathogens, which are typically assumed to be carried by expiratory droplets emitted directly from the respiratory tract of the infected animal. We recently established that influenza virus is also transmissible via “aerosolized fomites,” micron-scale dust particulates released from virus-contaminated surfaces (Asadi et al. in Nat Commun 11(1):4062, 2020). Here we expand on this observation, by counting and characterizing the particles emitted from guinea pig cages using an Aerodynamic Particle Sizer (APS) and an Interferometric Mie Imaging (IMI) system. Of over 9000 airborne particles emitted from guinea pig cages and directly imaged with IMI, none had an interference pattern indicative of a liquid droplet. Separate measurements of the particle count using the APS indicate that particle concentrations spike upwards immediately following animal motion, then decay exponentially with a time constant commensurate with the air exchange rate in the cage. Taken together, the results presented here raise the possibility that a non-negligible fraction of airborne influenza transmission events between guinea pigs occurs via aerosolized fomites rather than respiratory droplets, though the relative frequencies of these two routes have yet to be definitively determined.


Sign in / Sign up

Export Citation Format

Share Document