scholarly journals Geophysical validation and long-term consistency between GOME-2/MetOp-A total ozone column and measurements from the sensors GOME/ERS-2, SCIAMACHY/ENVISAT and OMI/Aura

2012 ◽  
Vol 5 (9) ◽  
pp. 2169-2181 ◽  
Author(s):  
M. E. Koukouli ◽  
D. S. Balis ◽  
D. Loyola ◽  
P. Valks ◽  
W. Zimmer ◽  
...  

Abstract. The main aim of the paper is to assess the consistency of five years of Global Ozone Monitoring Experiment-2/Metop-A [GOME-2] total ozone columns and the long-term total ozone satellite monitoring database already in existence through an extensive inter-comparison and validation exercise using as reference Brewer and Dobson ground-based measurements. The behaviour of the GOME-2 measurements is being weighed against that of GOME (1995–2011), Ozone Monitoring Experiment [OMI] (since 2004) and the Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY [SCIAMACHY] (since 2002) total ozone column products. Over the background truth of the ground-based measurements, the total ozone columns are inter-evaluated using a suite of established validation techniques; the GOME-2 time series follow the same patterns as those observed by the other satellite sensors. In particular, on average, GOME-2 data underestimate GOME data by about 0.80%, and underestimate SCIAMACHY data by 0.37% with no seasonal dependence of the differences between GOME-2, GOME and SCIAMACHY. The latter is expected since the three datasets are based on similar DOAS algorithms. This underestimation of GOME-2 is within the uncertainty of the reference data used in the comparisons. Compared to the OMI sensor, on average GOME-2 data underestimate OMI_DOAS (collection 3) data by 1.28%, without any significant seasonal dependence of the differences between them. The lack of seasonality might be expected since both the GOME data processor [GDP] 4.4 and OMI_DOAS are DOAS-type algorithms and both consider the variability of the stratospheric temperatures in their retrievals. Compared to the OMI_TOMS (collection 3) data, no bias was found. We hence conclude that the GOME-2 total ozone columns are well suitable to continue the long-term global total ozone record with the accuracy needed for climate monitoring studies.

2012 ◽  
Vol 5 (2) ◽  
pp. 3019-3045
Author(s):  
M. E. Koukouli ◽  
D. S. Balis ◽  
D. Loyola ◽  
P. Valks ◽  
W. Zimmer ◽  
...  

Abstract. The main aim of the paper is to assess the consistency of five years of Global Ozone Monitoring Experiment-2/Metop-A (GOME-2) total ozone columns and the long-term total ozone satellite monitoring database already in existence through an extensive inter-comparison and validation exercise using as reference Brewer and Dobson ground-based measurements. The behaviour of the GOME-2 measurements is being weighed against that of GOME (1995–2011), Ozone Monitoring Experiment (OMI) (since 2004) and the Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) (since 2002) total ozone column products. Over the background truth of the ground-based measurements, the total ozone columns are inter-evaluated using a suite of established validation techniques; the GOME-2 time series follow the same patterns as those observed by the other satellite sensors and in particular, on the average, GOME-2 data underestimate GOME data by about 0.80%, and underestimate SCIAMACHY data by 0.37% with no seasonal dependence of the differences between GOME-2, GOME and SCIAMACHY. The latter is expected since the three data sets are based on similar DOAS algorithms. This underestimation of GOME-2 is within the uncertainty of the reference data used in the comparisons. Compared to the OMI sensor, on the average GOME-2 data underestimate OMI_DOAS (collection 3) data by 1.28%, without any significant seasonal dependence of the differences between them. The lack of seasonality might be expected since both GDP 4.4 and OMI_DOAS are DOAS-type algorithms and both consider the variability of the stratospheric temperatures in their retrievals. Compared to the OMI_TOMS (collection 3) data, no bias was found. We hence conclude that the GOME-2 total ozone columns are well suitable to continue the long-term global total ozone record with the accuracy needed for climate monitoring studies.


Author(s):  
Ali M. Al-Salihi ◽  
Zehraa M. Hassan

The objective of this paper is to analyze the temporal and spatial variability of the total ozone column (TOC) distributions and trends over Iraq, during the last 30 years (1979–2012) using remote sensing-derived TOC data. Due to shortage of ground-based TOC measurements. TOC data derived from the Total Ozone Mapping Spectrometer (TOMS) for the period 1979–2004 and Ozone Monitoring Instrument (OMI) for the period 2005–2012 with spatial resolution (1o×1o) were used in present study. The spatial, long-term, monthly variations of TOC over Iraq were analysed. For the spatial variability, the latitudinal variability has a large range between (45 to 55) DU in winter and spring whereas during summer and autumn months ranged between (6 to 10) DU. Also represents an annual cycle with maximum in March and minimum in October. In contrast, the longitudinal variability is not significant. The long-term variability represented a notable decline for the period 1979–2012. The ozone negative trend was observed significantly during 1979–2004, for all months with trend ranged between (− 0.3 to 2) DU/year whereas the ozone positive trend was appear clearly during 2005–2007, for all months (0.1 to 2.3) DU/year ,except February and September which presented negative trends. The results can provide comprehensive descriptions of the TOC variations in Iraq and benefit climate change research in this region.


2021 ◽  
Vol 21 (10) ◽  
pp. 7881-7899
Author(s):  
Tove M. Svendby ◽  
Bjørn Johnsen ◽  
Arve Kylling ◽  
Arne Dahlback ◽  
Germar H. Bernhard ◽  
...  

Abstract. Measurements of total ozone column and effective cloud transmittance have been performed since 1995 at the three Norwegian sites Oslo/Kjeller, Andøya/Tromsø, and in Ny-Ålesund (Svalbard). These sites are a subset of nine stations included in the Norwegian UV monitoring network, which uses ground-based ultraviolet (GUV) multi-filter instruments and is operated by the Norwegian Radiation and Nuclear Safety Authority (DSA) and the Norwegian Institute for Air Research (NILU). The network includes unique data sets of high-time-resolution measurements that can be used for a broad range of atmospheric and biological exposure studies. Comparison of the 25-year records of GUV (global sky) total ozone measurements with Brewer direct sun (DS) measurements shows that the GUV instruments provide valuable supplements to the more standardized ground-based instruments. The GUV instruments can fill in missing data and extend the measuring season at sites with reduced staff and/or characterized by harsh environmental conditions, such as Ny-Ålesund. Also, a harmonized GUV can easily be moved to more remote/unmanned locations and provide independent total ozone column data sets. The GUV instrument in Ny-Ålesund captured well the exceptionally large Arctic ozone depletion in March/April 2020, whereas the GUV instrument in Oslo recorded a mini ozone hole in December 2019 with total ozone values below 200 DU. For all the three Norwegian stations there is a slight increase in total ozone from 1995 until today. Measurements of GUV effective cloud transmittance in Ny-Ålesund indicate that there has been a significant change in albedo during the past 25 years, most likely resulting from increased temperatures and Arctic ice melt in the area surrounding Svalbard.


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 721
Author(s):  
Klára Čížková ◽  
Kamil Láska ◽  
Ladislav Metelka ◽  
Martin Staněk

This study aims to compare the ground-based Brewer spectrophotometer total ozone column measurements with the Dobson spectrophotometer and various satellite overpass data available at Marambio Base during the period 2011–2013. This station provides a unique opportunity to study ozone variability near the edge of the southern polar vortex; therefore, many institutions, such as the National Meteorological Service of Argentina, the Finnish Meteorological Institute and the Czech Hydrometeorological Institute, have been carrying out various scientific activities there. The intercomparison was performed using total ozone column data sets retrieved from the ground-based instruments and from Ozone Monitoring Instrument (OMI)—Total Ozone Mapping Spectrometer (TOMS), OMI–Differential Optical Absorption Spectroscopy (DOAS), Global Ozone Monitoring Experiment 2 (GOME2), and Scanning Imaging Absorption Spectrophotometer for Atmospheric Cartography (SCIAMACHY) satellite observations. To assess the quality of the selected data products, comparisons with reference to the Brewer spectrophotometer single observations were made. The performance of the satellite observational techniques was assessed against the solar zenith angle and effective temperature, as well as against the actual shape of the vertical ozone profiles, which represent an important input parameter for the satellite ozone retrievals. The ground-based Dobson observations showed the best agreement with the Brewer data set (R2 = 1.00, RMSE = 1.5%); however, significant solar zenith angle (SZA) dependency was found. The satellite overpass data confirmed good agreement with the Brewer observations but were, however, overestimated in all cases except for the OMI(TOMS), when the mean bias differed from −0.7 DU in the case of the OMI(TOMS) to 6.4 DU for the SCIAMACHY. The differences in satellite observational techniques were further evaluated using statistical analyses adapted for depleted and non-depleted conditions over the ozone hole period.


2020 ◽  
pp. 13
Author(s):  
P. F. Orte ◽  
E. Luccini ◽  
E. Wolfram ◽  
F. Nollas ◽  
J. Pallotta ◽  
...  

<p>Total ozone column (TOC) measurements through the Ozone Monitoring Instrument (OMI/NASA EOSAura) are compared with ground-based observations made using Dobson and SAOZ instruments for the period 2004–2019 and 2008–02/2020, respectively. The OMI data were inverted using the Differential Optical Absorption Spectroscopy algorithm (overpass OMI-DOAS). The four ground-based sites used for the analysis are located in subpolar and subtropical latitudes spanning from 34°S to 54°S in the Southern Hemisphere, in the Argentine cities of Buenos Aires (34.58°S, 58.36°W; 25 m a.s.l.), Comodoro Rivadavia (45.86°S, 67.50°W; 46 m a.s.l.), Río Gallegos (51.60°S, 69.30°W; 72 m a.s.l.) and Ushuaia (54.80°S, 68.30°W; 14 m a.s.l.). The linear regression analyzes showed correlation values greater than 0.90 for all sites. The OMI measurements revealed an overestimation of less than 4 % with respect to the Dobson instruments, while the comparison with the SAOZ instrument presented a very low underestimation of less than 1 %.</p>


2019 ◽  
Vol 12 (10) ◽  
pp. 5263-5287 ◽  
Author(s):  
Katerina Garane ◽  
Maria-Elissavet Koukouli ◽  
Tijl Verhoelst ◽  
Christophe Lerot ◽  
Klaus-Peter Heue ◽  
...  

Abstract. In October 2017, the Sentinel-5 Precursor (S5P) mission was launched, carrying the TROPOspheric Monitoring Instrument (TROPOMI), which provides a daily global coverage at a spatial resolution as high as 7 km × 3.5 km and is expected to extend the European atmospheric composition record initiated with GOME/ERS-2 in 1995, enhancing our scientific knowledge of atmospheric processes with its unprecedented spatial resolution. Due to the ongoing need to understand and monitor the recovery of the ozone layer, as well as the evolution of tropospheric pollution, total ozone remains one of the leading species of interest during this mission. In this work, the TROPOMI near real time (NRTI) and offline (OFFL) total ozone column (TOC) products are presented and compared to daily ground-based quality-assured Brewer and Dobson TOC measurements deposited in the World Ozone and Ultraviolet Radiation Data Centre (WOUDC). Additional comparisons to individual Brewer measurements from the Canadian Brewer Network and the European Brewer Network (Eubrewnet) are performed. Furthermore, twilight zenith-sky measurements obtained with ZSL-DOAS (Zenith Scattered Light Differential Optical Absorption Spectroscopy) instruments, which form part of the SAOZ network (Système d'Analyse par Observation Zénitale), are used for the validation. The quality of the TROPOMI TOC data is evaluated in terms of the influence of location, solar zenith angle, viewing angle, season, effective temperature, surface albedo and clouds. For this purpose, globally distributed ground-based measurements have been utilized as the background truth. The overall statistical analysis of the global comparison shows that the mean bias and the mean standard deviation of the percentage difference between TROPOMI and ground-based TOC is within 0 –1.5 % and 2.5 %–4.5 %, respectively. The mean bias that results from the comparisons is well within the S5P product requirements, while the mean standard deviation is very close to those limits, especially considering that the statistics shown here originate both from the satellite and the ground-based measurements. Additionally, the TROPOMI OFFL and NRTI products are evaluated against already known spaceborne sensors, namely, the Ozone Mapping Profiler Suite, on board the Suomi National Polar-orbiting Partnership (OMPS/Suomi-NPP), NASA v2 TOCs, and the Global Ozone Monitoring Experiment 2 (GOME-2), on board the Metop-A (GOME-2/Metop-A) and Metop-B (GOME-2/Metop-B) satellites. This analysis shows a very good agreement for both TROPOMI products with well-established instruments, with the absolute differences in mean bias and mean standard deviation being below +0.7 % and 1 %, respectively. These results assure the scientific community of the good quality of the TROPOMI TOC products during its first year of operation and enhance the already prevalent expectation that TROPOMI/S5P will play a very significant role in the continuity of ozone monitoring from space.


Sign in / Sign up

Export Citation Format

Share Document