scholarly journals LABLE: A Multi-Institutional, Student-Led, Atmospheric Boundary Layer Experiment

2015 ◽  
Vol 96 (10) ◽  
pp. 1743-1764 ◽  
Author(s):  
P. Klein ◽  
T. A. Bonin ◽  
J. F. Newman ◽  
D. D. Turner ◽  
P. B. Chilson ◽  
...  

Abstract This paper presents an overview of the Lower Atmospheric Boundary Layer Experiment (LABLE), which included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was conducted as a collaborative effort between the University of Oklahoma (OU), the National Severe Storms Laboratory, Lawrence Livermore National Laboratory (LLNL), and the ARM program. LABLE can be considered unique in that it was designed as a multiphase, low-cost, multiagency collaboration. Graduate students served as principal investigators and took the lead in designing and conducting experiments aimed at examining boundary layer processes. The main objective of LABLE was to study turbulent phenomena in the lowest 2 km of the atmosphere over heterogeneous terrain using a variety of novel atmospheric profiling techniques. Several instruments from OU and LLNL were deployed to augment the suite of in situ and remote sensing instruments at the ARM site. The complementary nature of the deployed instruments with respect to resolution and height coverage provides a near-complete picture of the dynamic and thermodynamic structure of the atmospheric boundary layer. This paper provides an overview of the experiment including 1) instruments deployed, 2) sampling strategies, 3) parameters observed, and 4) student involvement. To illustrate these components, the presented results focus on one particular aspect of LABLE: namely, the study of the nocturnal boundary layer and the formation and structure of nocturnal low-level jets. During LABLE, low-level jets were frequently observed and they often interacted with mesoscale atmospheric disturbances such as frontal passages.

2020 ◽  
Vol 12 (6) ◽  
pp. 955 ◽  
Author(s):  
Viktor A. Banakh ◽  
Igor N. Smalikho ◽  
Andrey V. Falits

The paper presents the results of probing the stable atmospheric boundary layer in the coastal zone of Lake Baikal with a coherent Doppler wind lidar and a microwave temperature profiler. Two-dimensional height–temporal distributions of the wind velocity vector components, temperature, and parameters characterizing atmospheric stability and wind turbulence were obtained. The parameters of the low-level jets and the atmospheric waves arising in the stable boundary layer were determined. It was shown that the stable atmospheric boundary layer has an inhomogeneous fine scale layered structure characterized by strong variations of the Richardson number Ri. Layers with large Richardson numbers alternate with layers where Ri is less than the critical value of the Richardson number Ricr = 0.25. The channels of decreased stability, where the conditions are close to neutral stratification 0 < Ri < 0.25, arise in the zone of the low-level jets. The wind turbulence in the central part of the observed jets, where Ri > Ricr, is weak, increases considerably to the periphery of jets, at heights where Ri < Ricr. The turbulence may intensify at the appearance of internal atmospheric waves.


Atmosphere ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 28 ◽  
Author(s):  
Igor Petenko ◽  
Giampietro Casasanta ◽  
Simone Bucci ◽  
Margarita Kallistratova ◽  
Roberto Sozzi ◽  
...  

The characteristics of the vertical and temporal structure of the coastal atmospheric boundary layer are variable for different sites and are often not well known. Continuous monitoring of the atmospheric boundary layer was carried out close to the Tyrrhenian Sea, near Tarquinia (Italy), in 2015–2017. A ground-based remote sensing instrument (triaxial Doppler sodar) and in situ sensors (meteorological station, ultrasonic anemometer/thermometer, and net radiometer) were used to measure vertical wind velocity profiles, the thermal structure of the atmosphere, the height of the turbulent layer, turbulent heat and momentum fluxes in the surface layer, atmospheric radiation, and precipitation. Diurnal alternation of the atmospheric stability types governed by the solar cycle coupled with local sea/land breeze circulation processes is found to be variable and is classified into several main regimes. Low-level jets (LLJ) at heights of 100–300 m above the surface with maximum wind speed in the range of 5–18 m s−1 occur in land breezes, both during the night and early in the morning. Empirical relationships between the LLJ core wind speed characteristics and those near the surface are obtained. Two separated turbulent sub-layers, both below and above the LLJ core, are often observed, with the upper layer extending up to 400–600 m. Kelvin–Helmholtz billows associated with internal gravity–shear waves occurring in these layers present opposite slopes, in correspondence with the sign of vertical wind speed gradients. Our observational results provide a basis for the further development of theoretical and modelling approaches, taking into account the wave processes occurring in the atmospheric boundary layer at the land–sea interface.


2005 ◽  
Vol 44 (10) ◽  
pp. 1593-1606 ◽  
Author(s):  
Jie Song ◽  
Ke Liao ◽  
Richard L. Coulter ◽  
Barry M. Lesht

Abstract A unique dataset obtained with combinations of minisodars and 915-MHz wind profilers at the Atmospheric Boundary Layer Experiments (ABLE) facility in Kansas was used to examine the detailed characteristics of the nocturnal low-level jet (LLJ). In contrast to instruments used in earlier studies, the ABLE instruments provide hourly, high-resolution vertical profiles of wind velocity from just above the surface to approximately 2 km above ground level (AGL). Furthermore, the 6-yr span of the dataset allowed the examination of interannual variability in jet properties with improved statistical reliability. It was found that LLJs occurred during 63% of the nighttime periods sampled. Although most of the observed jets were southerly, a substantial fraction (28%) was northerly. Wind maxima occurred most frequently at 200–400 m AGL, though some jets were found as low as 50 m, and the strongest jets tended to occur above 300 m. Comparison of LLJ heights at three locations within the ABLE domain and at one location outside the domain suggests that the jet is equipotential rather than terrain following. The occurrence of southerly LLJ varied annually in a way that suggests a connection between the tendency for jet formation and the large-scale circulation patterns associated with El Niño and La Niña, as well as with the Pacific decadal oscillation. Frequent and strong southerly jets that transport moisture downstream do not necessarily lead to more precipitation locally, however.


2005 ◽  
Vol 135 (1-4) ◽  
pp. 35-43 ◽  
Author(s):  
N. Mathieu ◽  
I.B. Strachan ◽  
M.Y. Leclerc ◽  
A. Karipot ◽  
E. Pattey

MAUSAM ◽  
2022 ◽  
Vol 53 (1) ◽  
pp. 75-86
Author(s):  
R. SURESH ◽  
P. V. SANKARAN ◽  
S. RENGARAJAN

Thermodynamic structure of atmospheric boundary layer during October - December covering southwest and northeast monsoon activities over interior Tamilnadu (ITN), coastal Tamilnadu (CTN) and adjoining Bay of Bengal (BOB) has been studied using  TIROS Operational Vertical Sounder (TOVS) data of 1996-98. Heights of neutral stratified mixed layer, cloud layer and planetary boundary layer (PBL) have been estimated through available standard pressure level data. Highest PBL occurs during active northeast monsoon. Cloud layer thickness during weak northeast monsoon over interior Tamilnadu  is significantly higher than that over coastal Tamilnadu and  also over Bay of Bengal. Convective stability (instability)  of the atmosphere in 850-700 hPa layer is associated with weak / withdrawal (active) phase of northeast monsoon. One of  the plausible reasons for  subdued rainfall activity during weak northeast monsoon over interior Tamilnadu could be convective instability  seen over this region in 850-700 hPa layer. But the same is absent in CTN and BOB where no rainfall activity exists during weak monsoon phase. Virtual temperature lapse rate in 850-700 hPa layer exceeding (less than) 6oK/km is associated with active (weak) phase of northeast monsoon over the interior, coastal Tamilnadu and Bay of Bengal.


2018 ◽  
Vol 33 (5) ◽  
pp. 1109-1120 ◽  
Author(s):  
David E. Jahn ◽  
William A. Gallus

Abstract The Great Plains low-level jet (LLJ) is influential in the initiation and evolution of nocturnal convection through the northward advection of heat and moisture, as well as convergence in the region of the LLJ nose. However, accurate numerical model forecasts of LLJs remain a challenge, related to the performance of the planetary boundary layer (PBL) scheme in the stable boundary layer. Evaluated here using a series of LLJ cases from the Plains Elevated Convection at Night (PECAN) program are modifications to a commonly used local PBL scheme, Mellor–Yamada–Nakanishi–Niino (MYNN), available in the Weather Research and Forecasting (WRF) Model. WRF forecast mean absolute error (MAE) and bias are calculated relative to PECAN rawinsonde observations. The first MYNN modification invokes a new set of constants for the scheme closure equations that, in the vicinity of the LLJ, decreases forecast MAEs of wind speed, potential temperature, and specific humidity more than 19%. For comparison, the Yonsei University (YSU) scheme results in wind speed MAEs 22% lower but specific humidity MAEs 17% greater than in the original MYNN scheme. The second MYNN modification, which incorporates the effects of potential kinetic energy and uses a nonzero mixing length in stable conditions as dependent on bulk shear, reduces wind speed MAEs 66% for levels below the LLJ, but increases MAEs at higher levels. Finally, Rapid Refresh analyses, which are often used for forecast verification, are evaluated here and found to exhibit a relatively large average wind speed bias of 3 m s−1 in the region below the LLJ, but with relatively small potential temperature and specific humidity biases.


2018 ◽  
Vol 146 (8) ◽  
pp. 2615-2637 ◽  
Author(s):  
Joshua G. Gebauer ◽  
Alan Shapiro ◽  
Evgeni Fedorovich ◽  
Petra Klein

AbstractObservations from three nights of the Plains Elevated Convection at Night (PECAN) field campaign were used in conjunction with Rapid Refresh model forecasts to find the cause of north–south lines of convection, which initiated away from obvious surface boundaries. Such pristine convection initiation (CI) is relatively common during the warm season over the Great Plains of the United States. The observations and model forecasts revealed that all three nights had horizontally heterogeneous and veering-with-height low-level jets (LLJs) of nonuniform depth. The veering and heterogeneity were associated with convergence at the top-eastern edge of the LLJ, where moisture advection was also occurring. As time progressed, this upper region became saturated and, due to its placement above the capping inversion, formed moist absolutely unstable layers, from which the convergence helped initiate elevated convection. The structure of the LLJs on the CI nights was likely influenced by nonuniform heating across the sloped terrain, which led to the uneven LLJ depth and contributed toward the wind veering with height through the creation of horizontal buoyancy gradients. These three CI events highlight the importance of assessing the full three-dimensional structure of the LLJ when forecasting nocturnal convection over the Great Plains.


Sign in / Sign up

Export Citation Format

Share Document