scholarly journals Glyoxal retrieval from the Ozone Monitoring Instrument

2014 ◽  
Vol 7 (11) ◽  
pp. 3891-3907 ◽  
Author(s):  
C. Chan Miller ◽  
G. Gonzalez Abad ◽  
H. Wang ◽  
X. Liu ◽  
T. Kurosu ◽  
...  

Abstract. We present an algorithm for the retrieval of glyoxal from backscattered solar radiation, and apply it to spectra measured by the Ozone Monitoring Instrument (OMI). The algorithm is based on direct spectrum fitting, and adopts a two-step fitting routine to account for liquid water absorption. Previous studies have shown that glyoxal retrieval algorithms are highly sensitive to the position of the spectral fit window. This dependence was systematically tested on real and simulated OMI spectra. We find that a combination of errors resulting from uncertainties in reference cross sections and spectral features associated with the Ring effect are consistent with the fit-window dependence observed in real spectra. This implies an optimal fitting window of 435–461 nm, consistent with previous satellite glyoxal retrievals. The results from the retrieval of simulated spectra also support previous findings that have suggested that glyoxal is sensitive to NO2 cross-section temperature. The retrieval window limits of the liquid water retrieval are also tested. A retrieval window 385–470 nm reduces interference with strong spectral features associated with sand. We show that cross-track dependent offsets (stripes) present in OMI can be corrected using offsets derived from retrieved slant columns over the Sahara, and apply the correction to OMI data. Average glyoxal columns are on average lower than those of previous studies likely owing to the choice of reference sector for offset correction. OMI VCDs (vertical column densities)are lower compared to other satellites over the tropics and Asia during the monsoon season, suggesting that the new retrieval is less sensitive to water vapour abundance. Consequently we do not see significant glyoxal enhancements over tropical oceans. OMI-derived glyoxal-to-formaldehyde ratios over biogenic and anthropogenic source regions are consistent with surface observations.

2014 ◽  
Vol 7 (6) ◽  
pp. 6065-6112 ◽  
Author(s):  
C. C. Miller ◽  
G. G. Abad ◽  
H. Wang ◽  
X. Liu ◽  
T. Kurosu ◽  
...  

Abstract. We present an algorithm for the retrieval of glyoxal from backscattered solar radiation, and apply it to spectra measured by the Ozone Monitoring Instrument (OMI). The algorithm is based on direct spectrum fitting, and adopts a two-step fitting routine to account for liquid water absorption. Previous studies have shown that glyoxal retrieval algorithms are highly sensitive to the position of the spectral fit window. This dependence was systematically tested on real and simulated OMI spectra. We find that a combination of errors resulting from uncertainties in reference cross sections and spectral features associated with the Ring effect are consistent with the fit-window dependence observed in real spectra. This implies an optimal fitting window of 435–461 nm, consistent with previous satellite glyoxal retrievals. The results from the retrieval of simulated spectra also support previous findings that have suggested that glyoxal is sensitive to NO2 cross section temperature. The retrieval window limits of the liquid water retrieval are also tested. A retrieval window 385–470 nm reduces interference with strong spectral features associated with sand. We show that cross track dependent offsets (stripes) present in OMI can be corrected using offsets derived from retrieved slant columns over the Sahara, and apply the correction to OMI data. Average glyoxal columns are on average lower than those of previous studies likely owing to the choice of reference sector for offset correction. OMI VCDs are lower compared to other satellites over the tropics and Asia during the monsoon season, suggesting that the new retrieval is less sensitive to water vapor abundance. Consequently we do not see significant glyoxal enhancements over tropical oceans. OMI derived glyoxal-to-formaldehyde ratios over biogenic and anthropogenic source regions are consistent with surface observations.


2016 ◽  
Vol 16 (20) ◽  
pp. 13015-13034 ◽  
Author(s):  
Christoph Hörmann ◽  
Holger Sihler ◽  
Steffen Beirle ◽  
Marloes Penning de Vries ◽  
Ulrich Platt ◽  
...  

Abstract. The Rann of Kutch (India and Pakistan) is one of the largest salt deserts in the world. Being a so-called "seasonal salt marsh", it is regularly flooded during the Indian summer monsoon. We present 10 years of bromine monoxide (BrO) satellite observations by the Ozone Monitoring Instrument (OMI) over the Great and Little Rann of Kutch. OMI spectra were analysed using Differential Optical Absorption Spectroscopy (DOAS) and revealed recurring high BrO vertical column densities (VCDs) of up to 1.4  ×  1014 molec cm−2 during April/May, but no significantly enhanced column densities during the monsoon season (June–September). In the following winter months, the BrO VCDs are again slightly enhanced while the salty surface dries up. We investigate a possible correlation of enhanced reactive bromine concentrations with different meteorological parameters and find a strong relationship between incident UV radiation and the total BrO abundance. In contrast, the second Global Ozone Monitoring Instrument (GOME-2) shows about 4 times lower BrO VCDs over the Rann of Kutch than found by OMI and no clear seasonal cycle is observed. One reason for this finding might be the earlier local overpass time of GOME-2 compared to OMI (around 09:30 vs. 13:30 LT), as the ambient conditions significantly differ for both satellite instruments at the time of the measurements. Further possible reasons are discussed and mainly attributed to instrumental issues. OMI additionally confirms the presence of enhanced BrO concentrations over the Dead Sea valley (Israel/Jordan), as suggested by former ground-based observations. The measurements indicate that the Rann of Kutch salt marsh is probably one of the strongest natural point sources of reactive bromine compounds outside the polar regions and is therefore supposed to have a significant impact on local and regional ozone chemistry.


2006 ◽  
Vol 44 (5) ◽  
pp. 1245-1258 ◽  
Author(s):  
E.J. Bucsela ◽  
E.A. Celarier ◽  
M.O. Wenig ◽  
J.F. Gleason ◽  
J.P. Veefkind ◽  
...  

2014 ◽  
Vol 14 (19) ◽  
pp. 10565-10588 ◽  
Author(s):  
S. Choi ◽  
J. Joiner ◽  
Y. Choi ◽  
B. N. Duncan ◽  
A. Vasilkov ◽  
...  

Abstract. We derive free-tropospheric NO2 volume mixing ratios (VMRs) by applying a cloud-slicing technique to data from the Ozone Monitoring Instrument (OMI) on the Aura satellite. In the cloud-slicing approach, the slope of the above-cloud NO2 column versus the cloud scene pressure is proportional to the NO2 VMR. In this work, we use a sample of nearby OMI pixel data from a single orbit for the linear fit. The OMI data include cloud scene pressures from the rotational-Raman algorithm and above-cloud NO2 vertical column density (VCD) (defined as the NO2 column from the cloud scene pressure to the top of the atmosphere) from a differential optical absorption spectroscopy (DOAS) algorithm. We compare OMI-derived NO2 VMRs with in situ aircraft profiles measured during the NASA Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign in 2006. The agreement is generally within the estimated uncertainties when appropriate data screening is applied. We then derive a global seasonal climatology of free-tropospheric NO2 VMR in cloudy conditions. Enhanced NO2 in the free troposphere commonly appears near polluted urban locations where NO2 produced in the boundary layer may be transported vertically out of the boundary layer and then horizontally away from the source. Signatures of lightning NO2 are also shown throughout low and middle latitude regions in summer months. A profile analysis of our cloud-slicing data indicates signatures of lightning-generated NO2 in the upper troposphere. Comparison of the climatology with simulations from the global modeling initiative (GMI) for cloudy conditions (cloud optical depth > 10) shows similarities in the spatial patterns of continental pollution outflow. However, there are also some differences in the seasonal variation of free-tropospheric NO2 VMRs near highly populated regions and in areas affected by lightning-generated NOx.


2020 ◽  
Author(s):  
Can Li ◽  
Nickolay A. Krotkov ◽  
Peter J. T. Leonard ◽  
Simon Carn ◽  
Joanna Joiner ◽  
...  

Abstract. The Ozone Monitoring Instrument (OMI) has been providing global observations of SO2 pollution since 2004. Here we introduce the new anthropogenic SO2 vertical column density (VCD) dataset in the version 2 OMI SO2 product (OMSO2 V2). As with the previous version (OMSO2 V1.3), the new dataset is generated with an algorithm based on principal component analysis of OMI radiances, but features several updates. The most important among those is the use of expanded lookup tables and model a priori profiles to estimate SO2 Jacobians for individual OMI pixels, in order to better characterize pixel-to-pixel variations in SO2 sensitivity, including over snow and ice. Additionally, new data screening and spectral fitting schemes have been implemented to improve the quality of the spectral fit. As compared with the planetary boundary layer SO2 dataset in OMSO2 V1.3, the new dataset has substantially better data quality, especially over areas that are relatively clean or affected by the south Atlantic anomaly. The updated retrievals over snow/ice yield more realistic seasonal changes in SO2 at high latitudes and offer enhanced sensitivity to sources during wintertime. An error analysis has been conducted to assess uncertainties in SO2 VCDs from both the spectral fit and Jacobian calculations. The uncertainties from spectral fitting are reflected in SO2 slant column densities (SCDs) and largely depend on the signal-to-noise ratio of the measured radiances, as implied by the generally smaller SCD uncertainties over clouds or for lower solar zenith angles. The SCD uncertainties for individual pixels are estimated to be ~ 0.15–0.3 DU (Dobson Units) between ~ 40° S and ~ 40° N and to be ~ 0.2–0.5 DU at higher latitudes. The uncertainties from the Jacobians are approximately ~ 50–100 % over polluted areas, and primarily attributed to errors in SO2 a priori profiles and cloud pressures, as well as the lack of explicit treatment for aerosols. Finally, the daily mean and median SCDs over the presumably SO2-free equatorial East Pacific have increased by only ~ 0.0035 DU and ~ 0.003 DU respectively over the entire 15-year OMI record; while the standard deviation of SCDs has grown by only ~ 0.02 DU or ~ 10 %. Such remarkable long-term stability makes the new dataset particularly suitable for detecting regional changes in SO2 pollution.


2019 ◽  
Vol 12 (7) ◽  
pp. 3777-3788 ◽  
Author(s):  
Juseon Bak ◽  
Xiong Liu ◽  
Kang Sun ◽  
Kelly Chance ◽  
Jae-Hwan Kim

Abstract. We introduce a method that accounts for errors caused by the slit function in an optimal-estimation-based spectral fitting process to improve ozone profile retrievals from the Ozone Monitoring Instrument (OMI) ultraviolet measurements (270–330 nm). Previously, a slit function was parameterized as a standard Gaussian by fitting the full width at half maximum (FWHM) of the slit function from climatological OMI solar irradiances. This cannot account for the temporal variation in slit function in irradiance, the intra-orbit changes due to thermally induced change and scene inhomogeneity, and potential differences in the slit functions of irradiance and radiance measurements. As a result, radiance simulation errors may be induced due to convolving reference spectra with incorrect slit functions. To better represent the shape of the slit functions, we implement a more generic super Gaussian slit function with two free parameters (slit width and shape factor); it becomes standard Gaussian when the shape factor is fixed to be 2. The effects of errors in slit function parameters on radiance spectra, referred to as pseudo absorbers (PAs), are linearized by convolving high-resolution cross sections or simulated radiances with the partial derivatives of the slit function with respect to the slit parameters. The PAs are included in the spectral fitting scaled by fitting coefficients that are iteratively adjusted as elements of the state vector along with ozone and other fitting parameters. The fitting coefficients vary with cross-track and along-track pixels and show sensitivity to heterogeneous scenes. The PA spectrum is quite similar in the Hartley band below 310 nm for both standard and super Gaussians, but is more distinctly structured in the Huggins band above 310 nm with the use of super Gaussian slit functions. Finally, we demonstrate that some spikes of fitting residuals are slightly smoothed by accounting for the slit function errors. Comparisons with ozonesondes demonstrate noticeable improvements when using PAs for both standard and super Gaussians, especially for reducing the systematic biases in the tropics and midlatitudes (mean biases of tropospheric column ozone reduced from -1.4∼0.7 to 0.0∼0.4 DU) and reducing the standard deviations of tropospheric ozone column differences at high latitudes (by 1 DU for the super Gaussian). Including PAs also makes the retrievals consistent between standard and super Gaussians. This study corroborates the slit function differences between radiance and irradiance, demonstrating that it is important to account for such differences in the ozone profile retrievals.


2020 ◽  
Vol 13 (3) ◽  
pp. 1315-1335 ◽  
Author(s):  
Jos van Geffen ◽  
K. Folkert Boersma ◽  
Henk Eskes ◽  
Maarten Sneep ◽  
Mark ter Linden ◽  
...  

Abstract. The Tropospheric Monitoring Instrument (TROPOMI), aboard the Sentinel-5 Precursor (S5P) satellite, launched on 13 October 2017, provides measurements of atmospheric trace gases and of cloud and aerosol properties at an unprecedented spatial resolution of approximately 7×3.5 km2 (approx. 5.5×3.5 km2 as of 6 August 2019), achieving near-global coverage in 1 d. The retrieval of nitrogen dioxide (NO2) concentrations is a three-step procedure: slant column density (SCD) retrieval, separation of the SCD in its stratospheric and tropospheric components, and conversion of these into vertical column densities. This study focusses on the TROPOMI NO2 SCD retrieval: the retrieval method used, the stability of the SCDs and the SCD uncertainties, and a comparison with the Ozone Monitoring Instrument (OMI) NO2 SCDs. The statistical uncertainty, based on the spatial variability of the SCDs over a remote Pacific Ocean sector, is 8.63 µmol m−2 for all pixels (9.45 µmol m−2 for clear-sky pixels), which is very stable over time and some 30 % less than the long-term average over OMI–QA4ECV data (since the pixel size reduction TROPOMI uncertainties are ∼8 % larger). The SCD uncertainty reported by the differential optical absorption spectroscopy (DOAS) fit is about 10 % larger than the statistical uncertainty, while for OMI–QA4ECV the DOAS uncertainty is some 20 % larger than its statistical uncertainty. Comparison of the SCDs themselves over the Pacific Ocean, averaged over 1 month, shows that TROPOMI is about 5 % higher than OMI–QA4ECV, which seems to be due mainly to the use of the so-called intensity offset correction in OMI–QA4ECV but not in TROPOMI: turning that correction off means about 5 % higher SCDs. The row-to-row variation in the SCDs of TROPOMI, the “stripe amplitude”, is 2.15 µmol m−2, while for OMI–QA4ECV it is a factor of ∼2 (∼5) larger in 2005 (2018); still, a so-called stripe correction of this non-physical across-track variation is useful for TROPOMI data. In short, TROPOMI shows a superior performance compared with OMI–QA4ECV and operates as anticipated from instrument specifications. The TROPOMI data used in this study cover 30 April 2018 up to 31 January 2020.


2018 ◽  
Author(s):  
Raid M. Suleiman ◽  
Kelly Chance ◽  
Xiong Liu ◽  
Gonzalo González Abad ◽  
Thomas P. Kurosu ◽  
...  

Abstract. This paper presents the retrieval algorithm for the operational Ozone Monitoring Instrument (OMI) total bromine monoxide (BrO) data product (OMBRO) developed at the Smithsonian Astrophysical Observatory (SAO), and shows some validation with correlative measurements and retrieval results. The algorithm is based on direct nonlinear least squares fitting of radiances from the spectral range 319.0–347.5 nm. Radiances are modeled from the solar irradiance, attenuated by contributions from BrO and interfering gases, and including rotational Raman scattering, additive and multiplicative closure polynomials, correction for Nyquist undersampling, and the average fitting residual spectrum. The retrieval uses albedo- and wavelength-dependent air mass factors (AMFs), which have been pre-computed using a single mostly stratospheric BrO profile. The BrO cross sections are multiplied by the wavelength- dependent AMFs before fitting so that the vertical column densities (VCDs) are retrieved directly. The fitting uncertainties of BrO VCDs typically vary between 4 and 7 × 1012 molecules cm−2 (~ 10–20 % of the measured BrO VCDs). The retrievals agree well with GOME-2 observations at simultaneous nadir overpasses and ground-based zenith-sky measurements at 25 Harestua, Norway, with mean biases less than 0.12 ± 0.76 × 1013 molecules cm−2 (3.2 ± 16.3 %). Global distribution and seasonal variation of OMI BrO are generally consistent with previous satellite observations. The retrievals show enhancement of BrO at US Great Salt Lake. It also shows significant BrO enhancement from the eruption of the Eyjafjallajökull volcano, although the BrO retrievals can be affected under high SO2 loading conditions by the sub-optimum choice of SO2 cross sections.


Sign in / Sign up

Export Citation Format

Share Document