scholarly journals Accuracy assessment of Aqua-MODIS aerosol optical depth over coastal regions: importance of quality flag and sea surface wind speed

2012 ◽  
Vol 5 (4) ◽  
pp. 5205-5243 ◽  
Author(s):  
J. C. Anderson ◽  
J. Wang ◽  
J. Zeng ◽  
M. Petrenko ◽  
G. G. Leptoukh ◽  
...  

Abstract. Coastal regions around the globe are a major source for anthropogenic aerosols in the atmosphere, but the underlying surface characteristics are not favorable for the Moderate Resolution Imaging Spectroradiometer (MODIS) algorithms designed for retrieval of aerosols over dark land or open-ocean surfaces. Using data collected from 62 coastal stations worldwide from the Aerosol Robotic Network (AERONET) from ~ 2002–2010, accuracy assessments are made for coastal aerosol optical depth (AOD) retrieved from MODIS aboard Aqua satellite. It is found that coastal AODs (at 550 nm) characterized respectively by the MODIS Dark Land (hereafter Land) surface algorithm, the Open-Ocean (hereafter Ocean) algorithm, and AERONET all exhibit a log-normal distribution. After filtering by quality flags, the MODIS AODs respectively retrieved from the Land and Ocean algorithms are highly correlated with AERONET (with R2 &amp;approx; 0.8), but only the Land algorithm AODs fall within the expected error envelope greater than 66% of the time. Furthermore, the MODIS AODs from the Land algorithm, Ocean algorithm, and combined Land_and_Ocean product show statistically significant discrepancies from their respective counterparts from AERONET in terms of mean, probability density function, and cumulative density function, which suggest a need for future improvement in retrieval algorithms. Without filtering with quality flag, the MODIS Land_and_Ocean AOD dataset can be degraded by 30–50% in terms of mean bias. Overall, the MODIS Ocean algorithm overestimates the AERONET coastal AOD by 0.021 for AOD < 0.25 and underestimates it by 0.029 for AOD > 0.25. This dichotomy is shown to be related to the ocean surface wind speed and cloud contamination effects on the satellite aerosol retrieval. The Modern Era Retrospective-Analysis for Research and Applications (MERRA) reveals that wind speeds over the global coastal region (with a mean and median value of 2.94 m s−1 and 2.66 m s−1, respectively) are often slower than 6 m s−1 assumed in the MODIS Ocean algorithm. As a result of high correlation (R2 > 0.98) between the bias in binned MODIS AOD and the corresponding binned wind speed over the coastal sea surface, an empirical scheme for correcting the bias of AOD retrieved from the MODIS Ocean algorithm is formulated and is shown to be effective over the majority of the coastal AERONET stations, and hence can be used in future analysis of AOD trend and MODIS AOD data assimilation.

2010 ◽  
Vol 10 (14) ◽  
pp. 6711-6720 ◽  
Author(s):  
Y. Lehahn ◽  
I. Koren ◽  
E. Boss ◽  
Y. Ben-Ami ◽  
O. Altaratz

Abstract. Six years (2003–2008) of satellite measurements of aerosol parameters from the Moderate Resolution Imaging Spectroradiometer (MODIS) and surface wind speeds from Quick Scatterometer (QuikSCAT), the Advanced Microwave Scanning Radiometer (AMSR-E), and the Special Sensor Microwave Imager (SSM/I), are used to provide a comprehensive perspective on the link between surface wind speed and marine aerosol optical depth over tropical and subtropical oceanic regions. A systematic comparison between the satellite derived fields in these regions allows to: (i) separate the relative contribution of wind-induced marine aerosol to the aerosol optical depth; (ii) extract an empirical linear equation linking coarse marine aerosol optical depth and wind intensity; and (iii) identify a time scale for correlating marine aerosol optical depth and surface wind speed. The contribution of wind induced marine aerosol to aerosol optical depth is found to be dominated by the coarse mode elements. When wind intensity exceeds 4 m/s, coarse marine aerosol optical depth is linearly correlated with the surface wind speed, with a remarkably consistent slope of 0.009±0.002 s/m. A detailed time scale analysis shows that the linear correlation between the fields is well kept within a 12 h time frame, while sharply decreasing when the time lag between measurements is longer. The background aerosol optical depth, associated with aerosols that are not produced in-situ through wind driven processes, can be used for estimating the contributions of terrestrial and biogenic marine aerosol to over-ocean satellite retrievals of aerosol optical depth.


2012 ◽  
Vol 5 (2) ◽  
pp. 377-388 ◽  
Author(s):  
A. Smirnov ◽  
A. M. Sayer ◽  
B. N. Holben ◽  
N. C. Hsu ◽  
S. M. Sakerin ◽  
...  

Abstract. The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (~0.004–0.005), even for strong winds over 10 m s−1. The relationships show significant scatter (correlation coefficients typically in the range 0.3–0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used.


2011 ◽  
Vol 4 (6) ◽  
pp. 7185-7209
Author(s):  
A. Smirnov ◽  
A. M. Sayer ◽  
B. N. Holben ◽  
N. C. Hsu ◽  
S. M. Sakerin ◽  
...  

Abstract. The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (∼0.004–0.005), even for strong winds over 10 m s−1. The relationships show significant scatter (correlation coefficients typically in the range 0.3–0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used.


2010 ◽  
Vol 10 (1) ◽  
pp. 1983-2003 ◽  
Author(s):  
Y. Lehahn ◽  
I. Koren ◽  
E. Boss ◽  
Y. Ben-Ami ◽  
O. Altaratz

Abstract. Seven years (2002–2008) of satellite measurements from SeaWinds aboard Quick Scatterometer (QuikSCAT) and Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra are used for providing a global view on the link between surface wind speed and marine aerosol optical depth. This study shows that away form the continents the correlation time between the surface winds and the marine aerosol exceeds 4 h and therefore the two measurements can be linked. A systematic comparison between the satellite derived fields at different locations over the World Ocean allows to: (i) separate the relative contribution of wind-induced marine aerosol to the aerosol optical depth (ii) identify a threshold wind speed for triggering maritime contribution to aerosol optical depth; and (iii) extract an empirical linear equation linking marine aerosol optical depth and wind intensity. Wind induced marine aerosol contribution to aerosol optical depth is found to be dominated by the coarse mode elements. The threshold wind speed for triggering emission of coarse maritime aerosol is remarkably consistent with an average value of 4.1±0.1 m/s. When wind intensity exceeds the threshold value, coarse mode marine aerosol optical depth is linearly correlated to the surface wind speed, with a consistent slope of 0.0082±0.0004 s/m. The background aerosol optical depth, associated with aerosols that are not produced in-situ through wind driven processes, shows relatively large seasonal and geographical variability, and can be used for estimating the contribution of terrestrial aerosols to the aerosol optical depth over the ocean.


Sign in / Sign up

Export Citation Format

Share Document