scholarly journals Fast reconstruction of hyperspectral radiative transfer simulations by using small spectral subsets: application to the oxygen A band

2013 ◽  
Vol 6 (5) ◽  
pp. 8339-8370 ◽  
Author(s):  
A. Hollstein ◽  
R. Lindstrot

Abstract. Hyperspectral radiative transfer simulations are a versatile tool in remote sensing but can pose a major computational burden. We describe a simple method to construct hyperspectral simulation results by using only a small spectral subsample of the simulated wavelength range, thus leading to major speedups in such simulations. This is achieved by computing principal components for a small number of representative hyperspectral spectra and then deriving a reconstruction matrix for a specific spectral subset of channels to compute the hyperspectral data. The method is applied and discussed in detail using the example of top of atmosphere radiances in the oxygen A band, leading to speedups in the range of one to two orders of magnitude when compared to radiative transfer simulations at full spectral resolution.

2014 ◽  
Vol 7 (2) ◽  
pp. 599-607 ◽  
Author(s):  
A. Hollstein ◽  
R. Lindstrot

Abstract. Hyperspectral radiative transfer simulations are a versatile tool in remote sensing but can pose a major computational burden. We describe a simple method to construct hyperspectral simulation results by using only a small spectral subsample of the simulated wavelength range, thus leading to major speedups in such simulations. This is achieved by computing principal components for a small number of representative hyperspectral spectra and then deriving a reconstruction matrix for a specific spectral subset of channels to compute the hyperspectral data. The method is applied and discussed in detail using the example of top-of-atmosphere radiances in the oxygen A band, leading to speedups in the range of one to two orders of magnitude when compared to radiative transfer simulations at full spectral resolution.


2018 ◽  
Vol 10 (10) ◽  
pp. 1518 ◽  
Author(s):  
Stephane Boubanga-Tombet ◽  
Alexandrine Huot ◽  
Iwan Vitins ◽  
Stefan Heuberger ◽  
Christophe Veuve ◽  
...  

Remote sensing systems are largely used in geology for regional mapping of mineralogy and lithology mainly from airborne or spaceborne platforms. Earth observers such as Landsat, ASTER or SPOT are equipped with multispectral sensors, but suffer from relatively poor spectral resolution. By comparison, the existing airborne and spaceborne hyperspectral systems are capable of acquiring imagery from relatively narrow spectral bands, beneficial for detailed analysis of geological remote sensing data. However, for vertical exposures, those platforms are inadequate options since their poor spatial resolutions (metres to tens of metres) and NADIR viewing perspective are unsuitable for detailed field studies. Here, we have demonstrated that field-based approaches that incorporate thermal infrared hyperspectral technology with about a 40-nm bandwidth spectral resolution and tens of centimetres of spatial resolution allow for efficient mapping of the mineralogy and lithology of vertical cliff sections. We used the Telops lightweight and compact passive thermal infrared hyperspectral research instrument for field measurements in the Jura Cement carbonate quarry, Switzerland. The obtained hyperspectral data were analysed using temperature emissivity separation algorithms to isolate the different contributions of self-emission and reflection associated with different carbonate minerals. The mineralogical maps derived from measurements were found to be consistent with the expected carbonate results of the quarry mineralogy. Our proposed approach highlights the benefits of this type of field-based lightweight hyperspectral instruments for routine field applications such as in mining, engineering, forestry or archaeology.


2002 ◽  
Vol 36 (1) ◽  
pp. 4-13 ◽  
Author(s):  
Hiroya Yamano ◽  
Masayuki Tamura ◽  
Yoshimitsu Kunii ◽  
Michio Hidaka

Recent advances in the remote sensing of coral reefs include hyperspectral remote sensing and radiative transfer modeling. Hyperspectral data can be regarded as continuous and the derivative spectroscopy is effective for extracting coral reef components, including sand, macroalgae, and healthy, bleached, recently dead, and old dead coral. Radiative transfer models are effective for feasibility studies of satellite or airborne remote sensing. Using these techniques, we simulate and analyze the apparent reflectance of coral reef benthic features associated with bleaching events, obtained by hyperspectral sensors on various platforms (ROV, boat, airplane, and satellite), and suggest that the coral reef health on reef flats can be discriminated precisely. Remote sensing using hyperspectral sensors should significantly contribute to mapping and monitoring coral reef health.


Author(s):  
S. Jay ◽  
R. Bendoula ◽  
X. Hadoux ◽  
N. Gorretta

Most methods for retrieving foliar content from hyperspectral data are well adapted either to remote-sensing scale, for which each spectral measurement has a spatial resolution ranging from a few dozen centimeters to a few hundred meters, or to leaf scale, for which an integrating sphere is required to collect the spectral data. In this study, we present a method for estimating leaf optical properties from hyperspectral images having a spatial resolution of a few millimeters or centimeters. In presence of a single light source assumed to be directional, it is shown that leaf hyperspectral measurements can be related to the directional hemispherical reflectance simulated by the PROSPECT radiative transfer model using two other parameters. The first one is a multiplicative term that is related to local leaf angle and illumination zenith angle. The second parameter is an additive specular-related term that models BRDF effects. <br><br> Our model was tested on visible and near infrared hyperspectral images of leaves of various species, that were acquired under laboratory conditions. Introducing these two additional parameters into the inversion scheme leads to improved estimation results of PROSPECT parameters when compared to original PROSPECT. In particular, the RMSE for local chlorophyll content estimation was reduced by 21% (resp. 32%) when tested on leaves placed in horizontal (resp. sloping) position. Furthermore, inverting this model provides interesting information on local leaf angle, which is a crucial parameter in classical remote-sensing.


2016 ◽  
Author(s):  
C. J. Cox ◽  
P. M. Rowe ◽  
S. P. Neshyba ◽  
V. P. Walden

Abstract. Retrievals of cloud microphysical and macrophysical properties from ground-based and satellite-based infrared remote sensing instruments are critical for understanding clouds. However, retrieval uncertainties are difficult to quantify without a standard for comparison. This is particularly true over the polar regions where surface-based data for a cloud climatology are sparse, yet clouds represent a major source of uncertainty in weather and climate models. We describe a synthetic high-spectral resolution infrared data set that is designed to facilitate validation and development of cloud retrieval algorithms for surface- and satellite-based remote sensing instruments. Since the data set is calculated using pre-defined cloudy atmospheres, the properties of the cloud and atmospheric state are known a priori. The atmospheric state used for the simulations is drawn from radiosonde measurements made at the North Slope of Alaska (NSA) Atmospheric Radiation Measurement (ARM) site at Barrow, Alaska (71.325° N, 156.615° W), a location that is generally representative of the western Arctic. The cloud properties for each simulation are selected from statistical distributions derived from past field measurements. Upwelling (at 60 km) and downwelling (at the surface) infrared spectra are simulated for 222 cloudy cases from 50–3000 cm−1 (3.3 to 200 μm) at monochromatic (line-by-line) resolution at a spacing of ~ 0.01 cm−1 using the Line-by-line Radiative Transfer Model (LBLRTM) and the discrete-ordinate-method radiative transfer code (DISORT). These spectra are freely available for interested researchers from the ACADIS data repository (doi:10.5065/D61J97TT).


2016 ◽  
Vol 8 (1) ◽  
pp. 199-211 ◽  
Author(s):  
Christopher J. Cox ◽  
Penny M. Rowe ◽  
Steven P. Neshyba ◽  
Von P. Walden

Abstract. Cloud microphysical and macrophysical properties are critical for understanding the role of clouds in climate. These properties are commonly retrieved from ground-based and satellite-based infrared remote sensing instruments. However, retrieval uncertainties are difficult to quantify without a standard for comparison. This is particularly true over the polar regions, where surface-based data for a cloud climatology are sparse, yet clouds represent a major source of uncertainty in weather and climate models. We describe a synthetic high-spectral-resolution infrared data set that is designed to facilitate validation and development of cloud retrieval algorithms for surface- and satellite-based remote sensing instruments. Since the data set is calculated using pre-defined cloudy atmospheres, the properties of the cloud and atmospheric state are known a priori. The atmospheric state used for the simulations is drawn from radiosonde measurements made at the North Slope of Alaska (NSA) Atmospheric Radiation Measurement (ARM) site at Barrow, Alaska (71.325° N, 156.615° W), a location that is generally representative of the western Arctic. The cloud properties for each simulation are selected from statistical distributions derived from past field measurements. Upwelling (at 60 km) and downwelling (at the surface) infrared spectra are simulated for 260 cloudy cases from 50 to 3000 cm−1 (3.3 to 200 µm) at monochromatic (line-by-line) resolution at a spacing of  ∼  0.01 cm−1 using the Line-by-line Radiative Transfer Model (LBLRTM) and the discrete-ordinate-method radiative transfer code (DISORT). These spectra are freely available for interested researchers from the NSF Arctic Data Center data repository (doi:10.5065/D61J97TT).


Sign in / Sign up

Export Citation Format

Share Document