scholarly journals On the short-term variability of turbulence and temperature in the winter mesosphere

2018 ◽  
Author(s):  
Gerald A. Lehmacher ◽  
Miguel F. Larsen ◽  
Richard L. Collins ◽  
Aroh Barjatya ◽  
Boris Strelnikov

Abstract. Four mesosphere-lower thermosphere temperature and turbulence profiles were obtained in situ within ~ 30 minutes and over an area of about 100 by 100 kilometers during a sounding rocket experiment conducted on January 26, 2015 at Poker Flat Research Range in Alaska. Using active payload attitude control, neutral density fluctuations, a tracer for turbulence, were observed with very little interference from the payload spin motion, and with high precision (

2018 ◽  
Vol 36 (4) ◽  
pp. 1099-1116
Author(s):  
Gerald A. Lehmacher ◽  
Miguel F. Larsen ◽  
Richard L. Collins ◽  
Aroh Barjatya ◽  
Boris Strelnikov

Abstract. Four mesosphere–lower thermosphere temperature and turbulence profiles were obtained in situ within ∼30 min and over an area of about 100 by 100 km during a sounding rocket experiment conducted on 26 January 2015 at Poker Flat Research Range in Alaska. In this paper we examine the spatial and temporal variability of mesospheric turbulence in relationship to the static stability of the background atmosphere. Using active payload attitude control, neutral density fluctuations, a tracer for turbulence, were observed with very little interference from the payload spin motion, and with high precision (<0.01 %) at sub-meter resolution. The large-scale vertical temperature structure was very consistent between the four soundings. The mesosphere was almost isothermal, which means more stratified, between 60 and 80 km, and again between 88 and 95 km. The stratified regions adjoined quasi-adiabatic regions assumed to be well mixed. Additional evidence of vertical transport and convective activity comes from sodium densities and trimethyl aluminum trail development, respectively, which were both observed simultaneously with the in situ measurements. We found considerable kilometer-scale temperature variability with amplitudes of 20 K in the stratified region below 80 km. Several thin turbulent layers were embedded in this region, differing in width and altitude for each profile. Energy dissipation rates varied between 0.1 and 10 mW kg−1, which is typical for the winter mesosphere. Very little turbulence was observed above 82 km, consistent with very weak small-scale gravity wave activity in the upper mesosphere during the launch night. On the other hand, above the cold and prominent mesopause at 102 km, large temperature excursions of +40 to +70 K were observed. Simultaneous wind measurements revealed extreme wind shears near 108 km, and combined with the observed temperature gradient, isolated regions of unstable Richardson numbers (0<Ri<0.25) were detected in the lower thermosphere. The experiment was launched into a bright auroral arc under moderately disturbed conditions (Kp∼5).


2017 ◽  
Vol 35 (4) ◽  
pp. 979-998 ◽  
Author(s):  
Heiner Asmus ◽  
Tristan Staszak ◽  
Boris Strelnikov ◽  
Franz-Josef Lübken ◽  
Martin Friedrich ◽  
...  

Abstract. We present results of in situ measurements of mesosphere–lower thermosphere dusty-plasma densities including electrons, positive ions and charged aerosols conducted during the WADIS-2 sounding rocket campaign. The neutral air density was also measured, allowing for robust derivation of turbulence energy dissipation rates. A unique feature of these measurements is that they were done in a true common volume and with high spatial resolution. This allows for a reliable derivation of mean sizes and a size distribution function for the charged meteor smoke particles (MSPs). The mean particle radius derived from Schmidt numbers obtained from electron density fluctuations was ∼ 0.56 nm. We assumed a lognormal size distribution of the charged meteor smoke particles and derived the distribution width of 1.66 based on in situ-measured densities of different plasma constituents. We found that layers of enhanced meteor smoke particles' density measured by the particle detector coincide with enhanced Schmidt numbers obtained from the electron and neutral density fluctuations. Thus, we found that large particles with sizes  > 1 nm were stratified in layers of  ∼ 1 km thickness and lying some kilometers apart from each other.


2019 ◽  
Vol 19 (17) ◽  
pp. 11443-11460 ◽  
Author(s):  
Boris Strelnikov ◽  
Martin Eberhart ◽  
Martin Friedrich ◽  
Jonas Hedin ◽  
Mikhail Khaplanov ◽  
...  

Abstract. In this paper we present an overview of measurements conducted during the WADIS-2 rocket campaign. We investigate the effect of small-scale processes like gravity waves and turbulence on the distribution of atomic oxygen and other species in the mesosphere–lower thermosphere (MLT) region. Our analysis suggests that density fluctuations of atomic oxygen are coupled to fluctuations of other constituents, i.e., plasma and neutrals. Our measurements show that all measured quantities, including winds, densities, and temperatures, reveal signatures of both waves and turbulence. We show observations of gravity wave saturation and breakdown together with simultaneous measurements of generated turbulence. Atomic oxygen inside turbulence layers shows two different spectral behaviors, which might imply a change in its diffusion properties.


2021 ◽  
Author(s):  
Sofia Kroisz ◽  
Lukas Drescher ◽  
Manuela Temmer ◽  
Sandro Krauss ◽  
Barbara Süsser-Rechberger ◽  
...  

&lt;p&gt;Through advanced statistical investigation and evaluation of solar wind plasma and magnetic field data, we investigate the statistical relation between the magnetic field B&lt;sub&gt;z&lt;/sub&gt; component, measured at L1, and Earth&amp;#8217;s thermospheric neutral density. We will present preliminary results of the time series analyzes using in-situ plasma and magnetic field measurements from different spacecraft in near Earth space (e.g., ACE, Wind, DSCOVR) and relate those to derived thermospheric densities from various satellites (e.g., GRACE, CHAMP). The long and short term variations and dependencies in the solar wind data are related to variations in the neutral density of the thermosphere and geomagnetic indices. Special focus is put on the specific signatures that stem from coronal mass ejections and stream or corotating interaction regions.&amp;#160; The results are used to develop a novel short-term forecasting model called SODA (Satellite Orbit DecAy). This is a joint study between TU Graz and University of Graz funded by the FFG Austria (project &amp;#8220;SWEETS&amp;#8221;).&lt;/p&gt;


2019 ◽  
Author(s):  
Boris Strelnikov ◽  
Martin Eberhart ◽  
Martin Friedrich ◽  
Jonas Hedin ◽  
Mikhail Khaplanov ◽  
...  

Abstract. In this paper we present an overview of measurements conducted during the WADIS-2 rocket campaign. We investigate the effect of small-scale processes like gravity waves and turbulence on the distribution of atomic oxygen and other species in the MLT region. Our analysis suggests that density fluctuations of atomic oxygen are coupled to fluctuations of other constituents, i.e., plasma and neutrals. Our measurements show that all measured quantities, including winds, densities, and temperatures, reveal signatures of both waves and turbulence. We show observations of gravity wave saturation and breakdown together with simultaneous measurements of generated turbulence. Atomic oxygen inside turbulence layers shows two different spectral behaviors, which might imply change of its diffusion properties.


2010 ◽  
Vol 10 (21) ◽  
pp. 10291-10303 ◽  
Author(s):  
A. Damiani ◽  
M. Storini ◽  
M. L. Santee ◽  
S. Wang

Abstract. Analyses of OH zonal means, recorded at boreal high latitudes by the Aura Microwave Limb Sounder (MLS) in winters of 2005–2009, have shown medium- (weeks) and short- (days) term variability of the nighttime OH layer. Because of the exceptional descent of air from the mesosphere-lower thermosphere (MLT) region, medium-term variability occurred during February 2006 and February/March 2009. The layer normally situated at about 82 km descended by about 5–7 km, and its density increased to more than twice January values. In these periods and location the abundance of the lowered OH layer is comparable to the OH values induced by Solar Energetic Particle (SEP) forcing (e.g., SEP events of January 2005) at the same altitudes. In both years, the descent of the OH layer was coupled with increased mesospheric temperatures, elevated carbon monoxide and an almost complete disappearance of ozone at the altitude of the descended layer (which was not observed in other years). Moreover, under these exceptional atmospheric conditions, the third ozone peak, normally at about 72 km, is shown to descend about 5 km to lower altitude and increase in magnitude, with maximum values recorded during February 2009. Short-term variability occurred during Sudden Stratospheric Warming (SSW) events, in particular in January 2006, February 2008 and January 2009, when dynamics led to a smaller abundance of the OH layer at its typical altitude. During these periods, there was an upward displacement of the OH layer coupled to changes in ozone and carbon monoxide. These perturbations were the strongest during the SSW of January 2009; coincident upper mesospheric temperatures were the lowest recorded over the late winters of 2005–2009. Finally, the series of SSW events that occurred in late January/February 2008 induced noticeable short-term variability in ozone at altitudes of both the ozone minimum and the third ozone peak. These phenomena, confined inside the polar vortex, are an additional tool that can be used to investigate mesospheric vortex dynamics.


2010 ◽  
Vol 10 (6) ◽  
pp. 14583-14610 ◽  
Author(s):  
A. Damiani ◽  
M. Storini ◽  
M. L. Santee ◽  
S. Wang

Abstract. Analyses of OH zonal means, recorded at boreal high latitudes by the Aura Microwave Limb Sounder (MLS), have shown medium- (weeks) and short-term (days) variability of the nighttime OH layer. Because of the exceptional descent of air from the mesosphere-lower thermosphere region, medium-term variability occurred during February 2006 and February/March 2009. The layer normally situated at about 82 km descended by about 5–7 km, and its density increased to more than twice January values. In these periods and location the abundance of the lowered OH layer is comparable with the OH values induced by Solar Energetic Particle (SEP) forcing (e.g. SEP events of January 2005) at the same altitudes. In both years, the drop of the OH layer was coupled with increased mesospheric temperatures, elevated carbon monoxide and an almost complete disappearance of ozone at the altitude of the descended layer (which was not observed in other years). Moreover, under these exceptional atmospheric conditions, the third ozone peak is shown descending to lower altitude and increasing its abundance, with maximum values recorded during February 2009. Short-term variability occurred during Sudden Stratospheric Warming (SSW) events, in particular in January 2006, February 2008 and January 2009, when dynamics led to a smaller abundance of the OH layer at its typical altitude. The upward extension of the OH layer coupled to changes in ozone and carbon monoxide is shown to be strongest during the SSW of January 2009, coincident with the lowest upper mesospheric temperatures recorded at that time of year during 2005–2009. Finally, the series of SSW events that occurred in late January/February 2008 induced noticeable short-term variability in ozone at altitudes of both the ozone minimum and the third ozone peak. These phenomena, confined inside the polar vortex, are an additional tool that can be used to investigate mesospheric vortex dynamics.


2012 ◽  
Vol 112 ◽  
pp. 236-242 ◽  
Author(s):  
Bong-Oh Kwon ◽  
Jong Seong Khim ◽  
Jinsoon Park ◽  
Jongseong Ryu ◽  
Seong-Gil Kang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document