wind shears
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 19)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 14 (1) ◽  
pp. 131
Author(s):  
Yipeng Huang ◽  
Murong Zhang ◽  
Yuchun Zhao ◽  
Ben Jong-Dao Jou ◽  
Hui Zheng ◽  
...  

Among the densely-populated coastal areas of China, the southeastern coast has received less attention in convective development despite having been suffering from significantly increasing thunderstorm activities. The convective complexity under such a region with extremely complex underlying and convective conditions deserves in-depth observational surveys. This present study examined a high-impact convection outbreak event with over 40 hail reports in the southeastern coast of China on 6 May 2020 by focusing on contrasting the convective development (from convective initiation to supercell occurrences) among three adjacent convection-active zones (north (N), middle (M), and south (S)). The areas from N to S featured overall flatter terrain, higher levels of free convection, lower relative humidity, larger convective inhibition, more convective available potential energy, and greater vertical wind shears. With these mesoscale environmental variations, distinct inter-zone differences in the convective development were observed with the region’s surveillance radar network and the Himawari-8 geostationary satellite. Convection initiated in succession from N to S and began with more warm-rain processes in N and M and more ice-phase processes in S. The subsequent convection underwent more vigorous vertical growth from N to S. The extremely deep convection in S was characterized by the considerably strong precipitation above the freezing level, echo tops of up to 18 km, and a great amount of deep (even overshooting) and thick convective clouds with significant cloud-top glaciation. Horizontal anvil expansion in convective clouds was uniquely apparent over S. From N to S, more pronounced mesocyclone and weak-echo region signatures indicated high risks of severe supercell hailstorms. These results demonstrate the strong linkage between the occurrence likelihood of severe convection and associated weather (such as supercells and hailstones) and the early-stage convective development that can be well-captured by high-resolution observations and may facilitate fine-scale convection nowcasting.


2021 ◽  
Vol 6 (2) ◽  
pp. 477-489
Author(s):  
Kamran Shirzadeh ◽  
Horia Hangan ◽  
Curran Crawford ◽  
Pooyan Hashemi Tari

Abstract. The power generation and loading dynamic responses of a 2.2 m diameter horizontal axis wind turbine (HAWT) under some of the IEC 61400-1 transient extreme operational conditions, more specifically extreme wind shears (EWSs) and extreme operational gust (EOG), that were reproduced at the WindEEE Dome at Western University were investigated. The global forces were measured by a multi-axis force balance at the HAWT tower base. The unsteady horizontal shear induced a significant yaw moment on the rotor with a dynamic similar to that of the extreme event without affecting the power generation. The EOG severely affected all the performance parameters of the turbine.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 311
Author(s):  
Shih-Sian Yang ◽  
Chen-Jeih Pan ◽  
Uma Das

Atmospheric gravity waves play a crucial role in affecting atmospheric circulation, energy transportation, thermal structure, and chemical composition. Using ERA5 temperature data, the present study investigates the tropospheric to the lower mesospheric gravity wave potential energy (EP) over the equatorial region to understand the vertical coupling of the atmosphere. EP is mainly controlled by two factors. The first is zonal wind through wave–mean flow interactions, and thus EP has periodic variations that are correlated to the zonal wind oscillations and enhances around the altitudes of zero-wind shears where the zonal wind reverses. The second is the convections caused by atmospheric circulations and warm oceans, resulting in longitudinal variability in EP. The lower stratospheric and the lower mesospheric EP are negatively correlated. However, warm oceanic conditions can break this wave energy coupling and further enhance the lower mesospheric EP.


2021 ◽  
Vol 21 (4) ◽  
pp. 2343-2361
Author(s):  
Viswanathan Lakshmi Narayanan ◽  
Satonori Nozawa ◽  
Shin-Ichiro Oyama ◽  
Ingrid Mann ◽  
Kazuo Shiokawa ◽  
...  

Abstract. We present a detailed investigation of the formation of an additional sodium density peak at altitudes of 79–85 km below the main peak of the sodium layer based on sodium lidar and airglow imager measurements made at Ramfjordmoen near Tromsø, Norway, on the night of 19 December 2014. The airglow imager observations of OH emissions revealed four passing frontal systems that resembled mesospheric bores, which typically occur in ducting regions of the upper mesosphere. For about 1.5 h, the lower-altitude sodium peak had densities similar to that of the main peak of the layer around 90 km. The lower-altitude sodium peak weakened and disappeared soon after the fourth front had passed. The fourth front had weakened in intensity by the time it approached the region of lidar beams and disappeared soon afterwards. The column-integrated sodium densities increased gradually during the formation of the lower-altitude sodium peak. Temperatures measured with the lidar indicate that there was a strong thermal duct structure between 87 and 93 km. Furthermore, the temperature was enhanced below 85 km. Horizontal wind magnitudes estimated from the lidar showed strong wind shears above 93 km. We conclude that the combination of an enhanced stability region due to the temperature profile and intense wind shears have provided ideal conditions for evolution of multiple mesospheric bores revealed as frontal systems in the OH images. The downward motion associated with the fronts appeared to have brought air rich in H and O from higher altitudes into the region below 85 km, wherein the temperature was also higher. Both factors would have liberated sodium atoms from the reservoir species and suppressed the reconversion of atomic sodium into reservoir species so that the lower-altitude sodium peak could form and the column abundance could increase. The presented observations also reveal the importance of mesospheric frontal systems in bringing about significant variation of minor species over shorter temporal intervals.


2021 ◽  
pp. 117-129
Author(s):  
V. V. VOLKOV ◽  
◽  
M. A. STRUNIN ◽  
A. M. STRUNIN ◽  
◽  
...  

The results of the development and comparative analysis of methods for determining wind shear in the atmosphere (regression and difference ones) based on research aircraft data are presented. It is shown that shear calculation by the regression method gives the error of 0.002-0.006 (m/s)/km (depending on the length of the measurement sections) for horizontal shears and 0.04-0.12 (m/s)/100 m for vertical shears; the respective error of the difference method is 0.007 (m/s)/km and 0.07 (m/s)/100 m. Based on the Yak-42D “Roshydromet” research aircraft data, the values of shears of two horizontal components of wind speed in three directions (two horizontal and vertical) were calculated. According to the data of two research aircraft flights, the maximum values of the horizontal shear of wind speed components were reached above the boundary layer and were equal to 0.2 (m/s)/km, and the vertical shear was 1.2 (m/s)/100 m. The energy profiles of horizontal and vertical turbulent pulsations are constructed, it is shown that intense turbulence smooths wind shears in the convective atmospheric boundary layer.


2020 ◽  
Vol 20 (22) ◽  
pp. 14437-14456
Author(s):  
Xiao Liu ◽  
Jiyao Xu ◽  
Jia Yue ◽  
Hanli Liu

Abstract. Large wind shears around the mesopause region play an important role in atmospheric neutral dynamics and ionospheric electrodynamics. Based on previous observations using sounding rockets, lidars, radars, and model simulations, large shears are mainly attributed to gravity waves (GWs) and modulated by tides (Liu, 2017). Based on the dispersion and polarization relations of linear GWs and the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature data from 2002 to 2019, a method of deriving GW-perturbed wind shears is proposed. The zonal-mean GW-perturbed shears have peaks (13–17 ms−1 km−1) at around the mesopause region, i.e., at z = 90–100 km at most latitudes and at z = 80–90 km around the cold summer mesopause. This latitude–height pattern is robust over the 18 years and agrees with model simulations. The magnitudes of the GW-perturbed shears exhibit year-to-year variations and agree with the lidar and sounding rocket observations in a climatological sense but are 60 %–70 % of the model results in the zonal-mean sense. The GW-perturbed shears are hemispherically asymmetric and have strong annual oscillation (AO) at around 80 km (above 92 km) at the northern (southern) middle and high latitudes. At middle to high latitudes, the peaks of AO shift from winter to summer and then to winter again with increasing height. However, these GW-perturbed shears may be overestimated because the GW propagation direction cannot be resolved by the method and may be underestimated due to the observational filter, sampling distance, and cutoff criterion of the vertical wavelength of GWs.


2020 ◽  
Author(s):  
Kamran Shirzadeh ◽  
Horia Hangan ◽  
Curran Crawford ◽  
Pooyan Hashemi Tari

Abstract. The power performance and loading dynamic responses of a 2.2 m scaled horizontal axis wind turbine (HAWT) under the IEC 61400-1 transient operational extreme conditions were investigated. Extreme wind shears (EWS) and extreme operational gust (EOG) inflow conditions, generated in the WindEEE dome at Western University. The global forces were measured by a multi axis force balance at the HAWT tower base. The unsteady horizontal shear induced a significant yaw moment on the rotor with similar dynamic loads as the extreme event with no serious effect on the power generation. The EOG severely affected all the performance parameters of the turbine which were highly dependent on the operational TSR and the time duration of the event.


2020 ◽  
Author(s):  
Viswanathan Lakshmi Narayanan ◽  
Satanori Nozawa ◽  
Shin-Ichiro Oyama ◽  
Ingrid Mann ◽  
Kazuo Shiokawa ◽  
...  

Abstract. We present a detailed investigation of the formation of a secondary sodium layer at altitudes of 79–85 km below the main sodium layer based on sodium lidar and airglow imager measurements made at Ramfjordmoen near Tromsø, Norway on the night of 19 December 2014. The airglow imager observations of OH emission revealed four passing frontal systems that resembled mesospheric bores which typically occur in ducting regions of the upper mesosphere. For about 1.5 hours, the lower altitude sodium layer had densities similar to that of the main layer with a peak around 90 km. The lower altitude sodium layer weakened and disappeared soon after the fourth front had passed. The fourth front had weakened in intensity by the time it approached the region of lidar beams and disappeared soon afterwards. The column integrated sodium densities increased gradually during formation of the lower altitude sodium layer. Temperatures measured with the lidar indicate that there was a strong thermal duct structure between 87 and 93 km. Furthermore, the temperature was enhanced below 85 km. Horizontal wind magnitudes estimated from the lidar showed strong wind shears above 93 km. We conclude that the combination of an enhanced stability region due to the temperature profile and intense wind shears have provided ideal conditions for evolution of multiple mesospheric bores revealed as frontal systems in OH images. The downward motion associated with the fronts appeared to have brought air rich in H and O from higher altitudes into the region below 85 km wherein the temperatures were also relatively high. This would have liberated sodium atoms from the reservoir species and suppressed the re-conversion of atomic sodium into reservoir species so that the lower altitude sodium layer could form and the column abundance could increase. The presented observations also reveal the importance of mesospheric frontal systems in bringing about significant variation of minor species over shorter temporal intervals.


Sign in / Sign up

Export Citation Format

Share Document