scholarly journals Regional model simulation of the North Atlantic cyclone "Caroline" and comparisons with satellite data

2003 ◽  
Vol 21 (3) ◽  
pp. 655-659
Author(s):  
E. Keup-Thiel ◽  
C.-Ph. Klepp ◽  
E. Raschke ◽  
B. Rockel

Abstract. An individual regional model simulation of cyclone "Caroline" has been carried out to study water cycle components over the North Atlantic Ocean. The uncertainties associated with quantitative estimates of the water cycle components are highlighted by a comparison of the model results with SSM/I (Special Sensor Microwave Imager) satellite data. The vertically integrated water vapor of the REgional MOdel REMO is in good agreement with the SSM/I satellite data. The simulation results for other water budget components like the vertically integrated liquid water content and precipitation compare also reasonably well within the frontal system. However, the high precipitation rate in the cold air outbreak on the backside of the cold front derived from SSM/I satellite data is generally underestimated by REMO. This results in a considerable deficit of the total precipitation amount accumulated for the cyclone "Caroline". While REMO simulates 24.3 108 m3 h-1 for 09:00 UTC, the total areal precipitation from SSM/I satellite data amounts to 54.7 08 m3 h-1.Key words. Meteorology and atmospheric dynamics (precipitation; mesoscale meteorology) – Radio science (remote sensing)

2018 ◽  
Vol 612 ◽  
pp. 1141-1148 ◽  
Author(s):  
Min Zhang ◽  
Yuanling Zhang ◽  
Qi Shu ◽  
Chang Zhao ◽  
Gang Wang ◽  
...  

2021 ◽  
Vol 56 (7-8) ◽  
pp. 2027-2056
Author(s):  
Sandra M. Plecha ◽  
Pedro M. M. Soares ◽  
Susana M. Silva-Fernandes ◽  
William Cabos

Eos ◽  
1986 ◽  
Vol 67 (44) ◽  
pp. 835 ◽  
Author(s):  
W. E. Esaias ◽  
G. C. Feldman ◽  
C. R. McClain ◽  
J. A. Elrod

2014 ◽  
Vol 31 (6) ◽  
pp. 1434-1445 ◽  
Author(s):  
Federico Ienna ◽  
Young-Heon Jo ◽  
Xiao-Hai Yan

Abstract Subsurface coherent vortices in the North Atlantic, whose saline water originates from the Mediterranean Sea and which are known as Mediterranean eddies (meddies), have been of particular interest to physical oceanographers since their discovery, especially for their salt and heat transport properties into the North Atlantic Ocean. Many studies in the past have been successful in observing and studying the typical properties of meddies by probing them with in situ techniques. The use of remote sensing techniques would offer a much cheaper and easier alternative for studying these phenomena, but only a few past studies have been able to study meddies by remote sensing, and a reliable method for observing them remotely remains elusive. This research presents a new way of locating and tracking meddies in the North Atlantic Ocean using satellite altimeter data. The method presented in this research makes use of ensemble empirical mode decomposition (EEMD) as a means to isolate the surface expressions of meddies on the ocean surface and separates them from any other surface constituents, allowing robust meddies to be consistently tracked by satellite. One such meddy is successfully tracked over a 6-month time period (2 November 2005 to 17 May 2006). Results of the satellite tracking method are verified using expendable bathythermographs (XBT).


Sign in / Sign up

Export Citation Format

Share Document