scholarly journals Spatial distribution of spectral parameters of high latitude geomagnetic disturbances in the Pc5/Pi3 frequency range

2010 ◽  
Vol 28 (9) ◽  
pp. 1761-1775 ◽  
Author(s):  
N. V. Yagova ◽  
V. A. Pilipenko ◽  
L. N. Baransky ◽  
M. J. Engebretson

Abstract. We analyze spectral parameters of the geomagnetic disturbances within the 1–4 mHz (Pc5/Pi3) frequency range for 29 observatories from polar to auroral latitudes. The main object of this study is the broadband (noise) background under quiet and moderately disturbed conditions. To obtain a quantitative description of background high-latitude long period ULF activity the log-log dependence of the spectral power on frequency is expanded over Legendre polynomials, and the coefficients of this expansion (spectral moments) are used to describe the most common features of these spectra. Not only the spectral power, but also the spectral slope and higher spectral moments, averaged over relatively long time intervals, demonstrate a systematic dependence on corrected geomagnetic (CGM) latitude, Φ, and magnetic local time, MLT. The 2-D distributions of the spectral moments in Φ-MLT coordinates are characterized by existence of structures, narrow in latitude and extended in MLT, which can be attributed to the projections of different magnetospheric domains. Spatio-temporal distributions of spectral power of elliptically (P-component) and randomly (N-component) polarized signal are similar, but not identical. The N-component contribution to the total signal becomes non-negligible in regions with a high local activity, such as the auroral oval and dayside polar cusp. The spectral slope indicates a larger relative contribution of higher frequencies upon the latitude decrease, probably, as a result of the resonant effects in the ULF noise. The higher spectral moments are also controlled mostly by CGM latitude and MLT and are fundamentally different for the polarized and non-polarized components. This study is a step towards the construction of an empirical model of the ULF wave power in Earth's magnetosphere.

2017 ◽  
Vol 35 (3) ◽  
pp. 365-376 ◽  
Author(s):  
Nadezda Yagova ◽  
Natalia Nosikova ◽  
Lisa Baddeley ◽  
Olga Kozyreva ◽  
Dag A. Lorentzen ◽  
...  

Abstract. A study is undertaken into parameters of the polar auroral and geomagnetic pulsations in the frequency range 1–4 mHz (Pc5∕Pi3) during quiet geomagnetic intervals preceding auroral substorms and non-substorm background variations. Special attention is paid to substorms that occur under parameters of the interplanetary magnetic field (IMF) conditions typical for undisturbed days (non-triggered substorms). The spectral parameters of pulsations observed in auroral luminosity as measured by a meridian scanning photometer (Svalbard) in the polar cap and near the polar boundary of the auroral oval are studied and compared with those for the geomagnetic pulsations measured by the magnetometer network IMAGE in the same frequency range. It is found that Pc5∕Pi3 power spectral density (PSD) is higher during pre-substorm time intervals than for non-substorm days and that specific variations of pulsation parameters (substorm precursors) occur during the last 2–4 pre-substorm hours.


2020 ◽  
Vol 60 (5) ◽  
pp. 547-558
Author(s):  
L. I. Gromova ◽  
N. G. Kleimenova ◽  
S. V. Gromov ◽  
L. M. Malysheva

2021 ◽  
pp. 1-35
Author(s):  
Rick Dehner ◽  
Pranav Sriganesh ◽  
Ahmet Selamet ◽  
Keith Miazgowicz

Abstract The present study focuses on the acoustics of a turbocharger centrifugal compressor from a spark-ignition internal combustion engine. Whoosh noise is typically the primary concern for this type of compressor, which is loosely characterized by broadband sound elevation in the 4 to 13 kHz range. To identify the generation mechanism of broadband whoosh noise, the present study combines three approaches: three-dimensional (3D) computational fluid dynamics (CFD) predictions, experiments, and modal decomposition of 3D CFD results. After establishing the accuracy of predictions, flow structures and time-resolved pressures are closely examined in the vicinity of the main blade leading edge. This reveals the presence of rotating instabilities that may interact with the rotor blades to generate noise. An azimuthal modal decomposition is performed on the predicted pressure field to determine the number of cells and the frequency content of these rotating instabilities. The strength of the rotating instabilities and the frequency range in which noise is generated as a consequence of the rotor-rotating instability interaction, is found to correspond well with the qualitative trend of the whoosh noise that is measured several duct diameters upstream of the rotor blades. The variation of whoosh frequency range between low and high rotational speeds is interpreted through this analysis. It is also found that the whoosh noise primarily propagates along the duct as acoustic azimuthal modes. Hence, the inlet duct diameter, which governs the cut-off frequency for multi-dimensional acoustic modes, determines the lower frequency bound of the broadband noise.


2002 ◽  
Vol 20 (11) ◽  
pp. 1769-1781 ◽  
Author(s):  
J.-P. Villain ◽  
R. André ◽  
M. Pinnock ◽  
R. A. Greenwald ◽  
C. Hanuise

Abstract. The HF radars of the Super Dual Auroral Radar Network (SuperDARN) provide measurements of the E × B drift of ionospheric plasma over extended regions of the high-latitude ionosphere. We have conducted a statistical study of the associated Doppler spectral width of ionospheric F-region echoes. The study has been conducted with all available radars from the Northern Hemisphere for 2 specific periods of time. Period 1 corresponds to the winter months of 1994, while period 2 covers October 1996 to March 1997. The distributions of data points and average spectral width are presented as a function of Magnetic Latitude and Magnetic Local Time. The databases are very consistent and exhibit the same features. The most stringent features are: a region of very high spectral width, collocated with the ionospheric LLBL/cusp/mantle region; an oval shaped region of high spectral width, whose equator-ward boundary matches the poleward limit of the Holzworth and Meng auroral oval. A simulation has been conducted to evaluate the geometrical and instrumental effects on the spectral width. It shows that these effects cannot account for the observed spectral features. It is then concluded that these specific spectral width characteristics are the signature of ionospheric/magnetospheric coupling phenomena.Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions; ionospheric irregularities)


2013 ◽  
Vol 71 (12) ◽  
pp. 937-942 ◽  
Author(s):  
Aline Souza Marques da Silva Braga ◽  
Bruno Della Ripa Rodrigues Assis ◽  
Jamil Thiago Rosa Ribeiro ◽  
Patricia Maria Sales Polla ◽  
Breno Jose Hulle Pereira ◽  
...  

Objective To investigate the use of quantitative EEG (qEEG) in patients with acute encephalopathies (AEs) and EEG background abnormalities. Method Patients were divided into favorable outcome (group A, 43 patients) and an unfavorable outcome (group B, 5 patients). EEGLAB software was used for the qEEG analysis. A graphic of the spectral power from all channels was generated for each participant. Statistical comparisons between the groups were performed. Results In group A, spectral analysis revealed spectral peaks (theta and alpha frequency bands) in 84% (38/45) of the patients. In group B, a spectral peak in the delta frequency range was detected in one patient. The remainder of the patients in both groups did not present spectral peaks. Statistical analysis showed lower frequencies recorded from the posterior electrodes in group B patients. Conclusion qEEG may be useful in the evaluations of patients with AEs by assisting with the prognostic determination.


2016 ◽  
Vol 2 (2) ◽  
pp. 46-65 ◽  
Author(s):  
Ольга Козырева ◽  
Olga Kozyreva ◽  
Вячеслав Пилипенко ◽  
Vyacheslav Pilipenko ◽  
Марк Энгебретсон ◽  
...  

The world-wide spatial distribution of the wave power in the Pc5 band during magnetic storms has been compared with auroral oval boundaries. The poleward and equatorward auroral oval boundaries are estimated using either the British Antarctic Survey database containing IMAGE satellite UV observations of the aurora or the OVATION model based on the DMSP particle data. The “epicenter” of the spectral power of broadband Pc5 fluctuations during the storm growth phase is mapped inside the auroral oval. During the storm recovery phase, the spectral power of narrowband Pc5 waves, both in the dawn and dusk sectors, is mapped inside the auroral oval or around its equatorward boundary. This observational result confirms previously reported effects: the spatial/temporal variations of the Pc5 wave power in the morning/pre-noon sector are closely related to the dynamics of the auroral electrojet and magnetospheric field-aligned currents. At the same time, narrowband Pc5 waves demonstrate typical resonant features in the amplitude-phase latitudinal structure. Thus, the location of the auroral oval or its equatorward boundary is the preferred latitude for magnetospheric field-line Alfven resonator excitation. This effect is not taken into account by modern theories of ULF Pc5 waves, but it could be significant for the development of more adequate models.


2021 ◽  
Vol 44 ◽  
pp. 7-11
Author(s):  
Elena Antonova ◽  

We analyzed the problems of formation of the outer radiation belt (ORB) taking into consideration the latest changes in our understanding of the high-latitude magnetospheric topology. This includes strong evidence that the auroral oval maps to the outer part of the ring current, meanwhile the ORB polar boundary maps inside the auroral oval. Our analysis also includes the variation of the plasma pressure distribution and the time of the acceleration of relativistic electrons during geomagnetic storm. It is shown that the maximum of ORB is formed after the geomagnetic storm in the region of plasma pressure maximum. The position of this maximum agrees with the prediction of the ORB formation theory based on the analysis of ring current development during storm. We emphasize the role of adiabatic processes in the ORB dynamics and the importance of the substorm injections during storm recovery phase for the formation of enhanced fluxes of ORB electrons after the storm.


Sign in / Sign up

Export Citation Format

Share Document