scholarly journals Plasma transport modelling in the inner magnetosphere: effects of magnetic field, electric field and exospheric models

2011 ◽  
Vol 29 (2) ◽  
pp. 427-442 ◽  
Author(s):  
A. Woelfflé ◽  
D. Boscher ◽  
I. Dandouras

Abstract. A qualitative study is performed on plasma transport modelling in the inner magnetosphere, revealing the significance of a model use choice and its parameterization. First, we examine particle transport using comparative analysis of both magnetic and electric field models. This work reveals that the electric field plays an important role in understanding particle dynamics and the models lead to various results in terms of plasma source, energy and particle trajectory. We then concentrate particularly on proton loss assessment considering the charge exchange phenomenon. For that, models are needed to provide a neutral hydrogen density estimation. So, exospheric models were tested in light of the Dynamics Explorer 1 measurements analysed by Rairden.

1967 ◽  
Vol 31 ◽  
pp. 171-172
Author(s):  
Th. Schmidt-Kaler

The integralNHof neutral-hydrogen density along the line of sight is determined from the Kootwijk and Sydney surveys. The run ofNHwith galactic longitude agrees well with that of thermal continuous radiation and that of the optical surface brightness of the Milky Way.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ramin Zakeri

AbstractOne of the unresolved issues in physiology is how exactly myosin moves in a filament as the smallest responsible organ for contracting of a natural muscle. In this research, inspired by nature, a model is presented consisting of DPD (dissipative particle dynamics) particles driven by electro-osmotic flow (EOF) in micro channel that a thin movable impermeable polymer membrane has been attached across channel width, thus momentum of fluid can directly transfer to myosin stem. At the first, by validation of electro-osmotic flow in micro channel in different conditions with accuracy of less than 10 percentage error compared to analytical results, the DPD results have been developed to displacement of an impermeable polymer membrane in EOF. It has been shown that by the presence of electric field of 250 V/m and Zeta potential − 25 mV and the dimensionless ratio of the channel width to the thickness of the electric double layer or kH = 8, about 15% displacement in 8 s time will be obtained compared to channel width. The influential parameters on the displacement of the polymer membrane from DPD particles in EOF such as changes in electric field, ion concentration, zeta potential effect, polymer material and the amount of membrane elasticity have been investigated which in each cases, the radius of gyration and auto correlation velocity of different polymer membrane cases have been compared together. This simulation method in addition of probably helping understand natural myosin displacement mechanism, can be extended to design the contraction of an artificial muscle tissue close to nature.


2015 ◽  
Vol 108 ◽  
pp. 183-191 ◽  
Author(s):  
Reza Riahifar ◽  
Babak Raissi ◽  
Cyrus Zamani ◽  
Ehsan Marzbanrad

2010 ◽  
Vol 28 (1) ◽  
pp. 27-36 ◽  
Author(s):  
M. Spasojevic ◽  
B. R. Sandel

Abstract. For a set of five moderate disturbance events, we calculate the total number of He+ ions removed the plasmasphere using calibrated global EUV images. In each of the events, between ~0.6 and 2.2×1030 He+ ions are removed from a region of the inner magnetosphere from L=1.5 to 5.5. This loss constitutes between 20% and 42% of the initial He+ distribution. The lost percentage is correlated with the number of hours of strongly positive solar wind electric field (Ey>2.5 mV/m). Also, the total amount of material removed from the plasmasphere is estimated by using several values of the He+ to H+ number density ratio. The total mass lost is found to be in the range of 20 to 80 metric tons although for each individual case the estimate can vary by over 50% depending on assumed density ratio. We also attempt to distinguish between losses to the ionosphere and losses to the dayside boundary layers by estimating losses interior and exterior to the newly formed plasmapause boundary. For the events studied, losses inside the new plasmapause constitute between 24% to 54% of the total number of He+ ions lost.


1970 ◽  
Vol 36 ◽  
pp. 281-301 ◽  
Author(s):  
Edward B. Jenkins

Absorption at the Lyman-α transition from interstellar neutral hydrogen has been observed in the ultraviolet spectra of 18 nearby O and B stars. Radiation damping is the dominant cause of line broadening, which makes the derived line-of-sight column densities proportional to the square of the observed equivalent widths. An average hydrogen density on the order of 0.1 atom cm−3 has been found for most of the stars observed so far. This is in contrast to the findings from surveys of 21-cm radio emission, which suggest 0.7 atom cm−3 exists in the local region of the Galaxy. Several effects which might introduce uncertainties into the Lyman-α measurements are considered, but none seems to be able to produce enough error to explain the disagreement with the 21-cm data. The possibility that small-scale irregularities in the interstellar gas could give significantly lower values at Lyman-α is explored. However, a quantitative treatment of the factor of ten discrepancy in Orion indicates the only reasonable explanation requires the 21-cm flux to come primarily from small, dense, hot clouds which are well separated from each other. The existence of such clouds, however, poses serious theoretical difficulties.


2004 ◽  
Vol 22 (2) ◽  
pp. 497-510 ◽  
Author(s):  
G. V. Khazanov ◽  
M. W. Liemohn ◽  
T. S. Newman ◽  
M.-C. Fok ◽  
A. J. Ridley

Abstract. It is shown that narrow channels of high electric field are an effective mechanism for injecting plasma into the inner magnetosphere. Analytical expressions for the electric field cannot produce these channels of intense plasma flow, and thus, result in less entry and adiabatic energization of the plasma sheet into near-Earth space. For the ions, omission of these channels leads to an underprediction of the strength of the stormtime ring current and therefore, an underestimation of the geoeffectiveness of the storm event. For the electrons, omission of these channels leads to the inability to create a seed population of 10-100 keV electrons deep in the inner magnetosphere. These electrons can eventually be accelerated into MeV radiation belt particles. To examine this, the 1-7 May 1998 magnetic storm is studied with a plasma transport model by using three different convection electric field models: Volland-Stern, Weimer, and AMIE. It is found that the AMIE model can produce particle fluxes that are several orders of magnitude higher in the L = 2 – 4 range of the inner magnetosphere, even for a similar total cross-tail potential difference. Key words. Space plasma physics (charged particle motion and acceleration) – Magnetospheric physics (electric fields, storms and substorms)


Sign in / Sign up

Export Citation Format

Share Document