scholarly journals Radar imaging with EISCAT 3D

2021 ◽  
Vol 39 (1) ◽  
pp. 119-134
Author(s):  
Johann Stamm ◽  
Juha Vierinen ◽  
Juan M. Urco ◽  
Björn Gustavsson ◽  
Jorge L. Chau

Abstract. A new incoherent scatter radar called EISCAT 3D is being constructed in northern Scandinavia. It will have the capability to produce volumetric images of ionospheric plasma parameters using aperture synthesis radar imaging. This study uses the current design of EISCAT 3D to explore the theoretical radar imaging performance when imaging electron density in the E region and compares numerical techniques that could be used in practice. Of all imaging algorithms surveyed, the singular value decomposition with regularization gave the best results and was also found to be the most computationally efficient. The estimated imaging performance indicates that the radar will be capable of detecting features down to approximately 90×90 m at a height of 100 km, which corresponds to a ≈0.05∘ angular resolution. The temporal resolution is dependent on the signal-to-noise ratio and range resolution. The signal-to-noise ratio calculations indicate that high-resolution imaging of auroral precipitation is feasible. For example, with a range resolution of 1500 m, a time resolution of 10 s, and an electron density of 2×1011m-3, the correlation function estimates for radar scatter from the E region can be measured with an uncertainty of 5 %. At a time resolution of 10 s and an image resolution of 90×90 m, the relative estimation error standard deviation of the image intensity is 10 %. Dividing the transmitting array into multiple independent transmitters to obtain a multiple-input–multiple-output (MIMO) interferometer system is also studied, and this technique is found to increase imaging performance through improved visibility coverage. Although this reduces the signal-to-noise ratio, MIMO has successfully been applied to image strong radar echoes as meteors and polar mesospheric summer echoes. Use of the MIMO technique for incoherent scatter radars (ISRs) should be investigated further.

2020 ◽  
Author(s):  
Johann Stamm ◽  
Juha Vierinen ◽  
Juan M. Urco ◽  
Björn Gustavsson ◽  
Jorge L. Chau

Abstract. A new incoherent scatter radar called EISCAT 3D is being constructed in Northern Scandinavia. It will have the capability of producing volumetric images of ionospheric plasma parameters using aperture synthesis radar imaging. This study uses the current design of EISCAT 3D to explore the theoretical radar imaging performance and compares numerical techniques that could be used in practice. Of all imaging algorithms surveyed, the singular value decomposition with regularization gave the best results and was also found to be the most computationally efficient. The estimated imaging performance indicates that the radar will be capable of detecting features down to approximately 90x90 m at a height of 100 km, which corresponds to a ~0.05° angular resolution. The temporal resolution is dependent on the signal-to-noise ratio and range resolution. The signal-to-noise ratio calculations indicate that high resolution imaging of auroral precipitation is feasible. For example, with a range resolution of 1500 m, a time resolution of 10 seconds, and an electron density of 2·1011 m−3, the correlation function estimates for radar scatter from the E-region can be measured with an uncertainty of 5 %. At a time resolution of 10 s and an image resolution of 90x90 m, the relative estimation error standard deviation of the image intensity is 10 %. Dividing the transmitting array into multiple independent transmitters to get at multiple-input-multiple-output (MIMO) interferometer system is also studied and this technique is found to increase imaging performance through improved visibility coverage. However, an estimate shows that this reduces the signal-to-noise ratio. MIMO is therefore only useful for the most brightest targets, such as meteors, polar mesospheric summer and winter echoes, and satellites. The results show that radar imaging of is feasible with the EISCAT 3D radar, and that the use of the MIMO technique should be explored further.


2017 ◽  
Vol 3 (3) ◽  
pp. 76-81
Author(s):  
Дмитрий Кушнарев ◽  
Dmitriy Kushnarev ◽  
Валентин Лебедев ◽  
Valentin Lebedev ◽  
Виталий Хахинов ◽  
...  

We present the results of modernization of the Irkutsk Incoherent Scatter Radar’s control and acquisition system. The modernization was carried out using results of space experiments Plasma–Progress and Radar–Progress involving Progress cargo spacecraft. The modernization has improved the accuracy of radar measurements of low-orbit spacecraft. For example, with a signal-to-noise ratio equal to10, the accuracy of range and angle measurements is 100–300 m and 1–5 arc min.


2019 ◽  
Author(s):  
Ankur Kepkar ◽  
Christina Arras ◽  
Jens Wickert ◽  
Harald Schuh ◽  
Mahdi Alizadeh ◽  
...  

Abstract. The emerging technique of GPS Radio Occultation has been used to detect the ionospheric irregularities prominent in the F-region known as equatorial plasma bubbles. The plasma bubbles are characterized by depreciated regions of electron density. For investigating the plasma bubbles, a nine-year (2008–2016) long time series of signal-to-noise ratio data are used from the vertical GPS radio occultation profiles. The variation in the signal-to-noise ratio of the GPS signals can be linked to vertical changes in the electron density profiles that mainly occur in line with the irregularities in the Earth's ionosphere. The analysis revealed that the F-region irregularities, associated with plasma bubbles occur mainly post sunset close to Earth's geomagnetic equator. Dependence on the solar cycle as well as distinctive seasonal variation is observed when analyzed for different years. In contrast to the other ionospheric remote sensing methods, GPS Radio Occultation technique uniquely personifies the activity of the plasma bubbles based on altitude resolution on a global scale.


Ultrasonics ◽  
2004 ◽  
Vol 41 (9) ◽  
pp. 755-763 ◽  
Author(s):  
Farhang Honarvar ◽  
Hamid Sheikhzadeh ◽  
Michael Moles ◽  
Anthony N. Sinclair

Sign in / Sign up

Export Citation Format

Share Document