scholarly journals Marine denitrification rates determined from a global 3-D inverse model

2013 ◽  
Vol 10 (4) ◽  
pp. 2481-2496 ◽  
Author(s):  
T. DeVries ◽  
C. Deutsch ◽  
P. A. Rafter ◽  
F. Primeau

Abstract. A major impediment to understanding long-term changes in the marine nitrogen (N) cycle is the persistent uncertainty about the rates, distribution, and sensitivity of its largest fluxes in the modern ocean. We use a global ocean circulation model to obtain the first 3-D estimate of marine denitrification rates that is maximally consistent with available observations of nitrate deficits and the nitrogen isotopic ratio of oceanic nitrate. We find a global rate of marine denitrification in suboxic waters and sediments of 120–240 Tg N yr−1, which is lower than many other recent estimates. The difference stems from the ability to represent the 3-D spatial structure of suboxic zones, where denitrification rates of 50–77 Tg N yr−1 result in up to 50% depletion of nitrate. This depletion reduces the effect of local isotopic enrichment on the rest of the ocean, allowing the N isotope ratio of oceanic nitrate to be achieved with a sedimentary denitrification rate about 1.3–2.3 times that of suboxic zones. This balance of N losses between sediments and suboxic zones is shown to obey a simple relationship between isotope fractionation and the degree of nitrate consumption in the core of the suboxic zones. The global denitrification rates derived here suggest that the marine nitrogen budget is likely close to balanced.

2012 ◽  
Vol 9 (10) ◽  
pp. 14013-14052 ◽  
Author(s):  
T. DeVries ◽  
C. Deutsch ◽  
P. A. Rafter ◽  
F. Primeau

Abstract. A major impediment to understanding long-term changes in the marine nitrogen (N) cycle is the persistent uncertainty about the rates, distribution, and sensitivity of its largest fluxes in the modern ocean. We use a global 3-dimensional ocean circulation model to obtain the first estimate of marine denitrification rates that is maximally consistent with available observations of nitrate deficits and the nitrogen isotopic ratio of ocean nitrate. We find a global rate of marine denitrification in suboxic waters and sediments of 120–240 Tg N yr−1, which is lower than most other recent estimates. The difference stems from the ability to represent the 3-D spatial structure of suboxic zones, where denitrification rates of 50–77 Tg N yr−1 result in up to 50% depletion of nitrate. This depletion reduces the effect of local isotopic enrichment on the rest of the ocean, allowing the N isotope ratio of oceanic nitrate to be achieved with a sedimentary denitrification rate about 1.3–2.3 times that of suboxic zones. This balance of N losses between sediments and suboxic zones is shown to obey a simple relationship between isotope fractionation and the degree of nitrate consumption in the core of the suboxic zones. The global denitrification rates derived here suggest that the marine nitrogen budget is likely close to balanced.


2006 ◽  
Vol 56 (5-6) ◽  
pp. 543-567 ◽  
Author(s):  
Barnier Bernard ◽  
Gurvan Madec ◽  
Thierry Penduff ◽  
Jean-Marc Molines ◽  
Anne-Marie Treguier ◽  
...  

2012 ◽  
Vol 117 (C10) ◽  
pp. n/a-n/a ◽  
Author(s):  
J. F. Shriver ◽  
B. K. Arbic ◽  
J. G. Richman ◽  
R. D. Ray ◽  
E. J. Metzger ◽  
...  

2005 ◽  
Vol 35 (6) ◽  
pp. 933-948 ◽  
Author(s):  
Henk A. Dijkstra ◽  
Wilbert Weijer

Abstract A study of the stability of the global ocean circulation is performed within a coarse-resolution general circulation model. Using techniques of numerical bifurcation theory, steady states of the global ocean circulation are explicitly calculated as parameters are varied. Under a freshwater flux forcing that is diagnosed from a reference circulation with Levitus surface salinity fields, the global ocean circulation has no multiple equilibria. It is shown how this unique-state regime transforms into a regime with multiple equilibria as the pattern of the freshwater flux is changed in the northern North Atlantic Ocean. In the multiple-equilibria regime, there are two branches of stable steady solutions: one with a strong northern overturning in the Atlantic and one with hardly any northern overturning. Along the unstable branch that connects both stable solution branches (here for the first time computed for a global ocean model), the strength of the southern sinking in the South Atlantic changes substantially. The existence of the multiple-equilibria regime critically depends on the spatial pattern of the freshwater flux field and explains the hysteresis behavior as found in many previous modeling studies.


2013 ◽  
Vol 9 (2) ◽  
pp. 2095-2114
Author(s):  
P. Scussolini ◽  
E. van Sebille

Abstract. A maximum in the strength of Agulhas Leakage has been registered at the interface between Indian and South Atlantic oceans during glacial Termination II (T II), presumably transporting the salt and heat necessary to maintain the Atlantic Meridional Overturning Circulation (AMOC) at rates similar to the present day. However, it was never shown whether these were effectively incorporated in the South Atlantic gyre, or whether they retroflected into the Indian and/or Southern Oceans. To solve this question, we investigate the presence of paleo Agulhas rings from a sediment core on the central Walvis Ridge, almost 1800 km farther into the Atlantic basin than previously studied. Analysis of a 20 yr dataset from a global ocean circulation model allows us to relate density perturbations, at the depth of the thermocline, to the passage of individual rings over the core site. Using this relation from the numerical model as the basis for a proxy, we generate a time series of δ18O variability of Globorotalia truncatulinoides single specimens, revealing high levels of pycnocline depth variability at the site, suggesting enhanced numbers of Agulhas rings moving into the South Atlantic gyre around and before T II. Our record closely follows the published quantifications of Agulhas Leakage from the east of the Cape Basin, and thus shows that Indian Ocean waters entered the South Atlantic circulation. This provides crucial support to the view of a prominent role of the Agulhas Leakage in the shift from a glacial to an interglacial mode of AMOC.


2021 ◽  
Author(s):  
Martin Butzin ◽  
Dmitry Sidorenko ◽  
Peter Köhler

<p>We have implemented <sup>14</sup>C and further abiotic tracers (<sup>39</sup>Ar, CFC-12, and SF<sub>6</sub>) into the state-of-the-art ocean circulation model FESOM2. Different to other global ocean circulation models, FESOM2 employs unstructured meshes with variable horizontal resolution. This approach allows for improvements in areas which are commonly poorly resolved in global ocean modelling studies such as upwelling regions, while keeping the overall computational costs still sufficiently moderate. Here, we present results of a transient simulation running from 1850-2015 CE tracing the evolution of the bomb radiocarbon pulse with a focus on the evolution of marine radiocarbon ages. In addition we explore the potential of <sup>39</sup>Argon to complement <sup>14</sup>C dating of marine waters.</p>


Sign in / Sign up

Export Citation Format

Share Document