scholarly journals Seasonal dynamics of methane emissions from a subarctic fen in the Hudson Bay Lowlands

2013 ◽  
Vol 10 (7) ◽  
pp. 4465-4479 ◽  
Author(s):  
K. L. Hanis ◽  
M. Tenuta ◽  
B. D. Amiro ◽  
T. N. Papakyriakou

Abstract. Ecosystem-scale methane (CH4) flux (FCH4) over a subarctic fen at Churchill, Manitoba, Canada was measured to understand the magnitude of emissions during spring and fall shoulder seasons, and the growing season in relation to physical and biological conditions. FCH4 was measured using eddy covariance with a closed-path analyser in four years (2008–2011). Cumulative measured annual FCH4 (shoulder plus growing seasons) ranged from 3.0 to 9.6 g CH4 m−2 yr−1 among the four study years, with a mean of 6.5 to 7.1 g CH4 m−2 yr−1 depending upon gap-filling method. Soil temperatures to depths of 50 cm and air temperature were highly correlated with FCH4, with near-surface soil temperature at 5 cm most correlated across spring, fall, and the shoulder and growing seasons. The response of FCH4 to soil temperature at the 5 cm depth and air temperature was more than double in spring to that of fall. Emission episodes were generally not observed during spring thaw. Growing season emissions also depended upon soil and air temperatures but the water table also exerted influence, with FCH4 highest when water was 2–13 cm below and lowest when it was at or above the mean peat surface.

2013 ◽  
Vol 10 (3) ◽  
pp. 4539-4574
Author(s):  
K. L. Hanis ◽  
M. Tenuta ◽  
B. D. Amiro ◽  
T. N. Papakyriakou

Abstract. Ecosystem-scale methane (CH4) flux (FCH4) over a subarctic fen at Churchill, Manitoba, Canada was measured to understand the magnitude of emissions during spring and fall shoulder seasons, and the growing season in relation to physical and biological conditions. FCH4 was measured using eddy covariance with a closed-path analyzer in four years (2008–2011). Cumulative measured annual FCH4 (shoulder plus growing seasons) ranged from 3.0 to 9.6 g CH4 m−2 yr−1 among the four study years, with a mean of 6.5 to 7.1 g CH4 m−2 yr−1 depending upon gap-filling method. Soil temperatures to depths of 50 cm and air temperature were highly correlated with FCH4, with near surface soil temperature at 5 cm most correlated across spring, fall, and the whole season. The response of FCH4 to soil temperature at the 5 cm depth and air temperature was more than double in spring to that of fall. Emission episodes were generally not observed during spring thaw. Growing season emissions also depended upon soil and air temperatures but water table also exerted influence with FCH4 highest when water was 2–13 cm below and least when it was at or above the mean peat surface.


2021 ◽  
pp. 1-10
Author(s):  
X.M. Yang ◽  
W.D. Reynolds ◽  
C.F. Drury ◽  
M.D. Reeb

Although it is well established that soil temperature has substantial effects on the agri-environmental performance of crop production, little is known of soil temperatures under living cover crops. Consequently, soil temperatures under a crimson clover and white clover mix, hairy vetch, and red clover were measured for a cool, humid Brookston clay loam under a corn–soybean–winter wheat/cover crop rotation. Measurements were collected from August (after cover crop seeding) to the following May (before cover crop termination) at 15, 30, 45, and 60 cm depths during 2018–2019 and 2019–2020. Average soil temperatures (August–May) were not affected by cover crop species at any depth, or by air temperature at 60 cm depth. During winter, soil temperatures at 15, 30, and 45 cm depths were greater under cover crops than under a no cover crop control (CK), with maximum increase occurring at 15 cm on 31 January 2019 (2.5–5.7 °C) and on 23 January 2020 (0.8–1.9 °C). In spring, soil temperatures under standing cover crops were cooler than the CK by 0.1–3.0 °C at 15 cm depth, by 0–2.4 °C at the 30 and 45 cm depths, and by 0–1.8 °C at 60 cm depth. In addition, springtime soil temperature at 15 cm depth decreased by about 0.24 °C for every 1 Mg·ha−1 increase in live cover crop biomass. Relative to bare soil, cover crops increased near-surface soil temperature during winter but decreased near-surface soil temperature during spring. These temperature changes may have both positive and negative effects on the agri-environmental performance of crop production.


1952 ◽  
Vol 5 (2) ◽  
pp. 303 ◽  
Author(s):  
ES West

Soil temperatures recorded at Griffith over an 8 year period at a depth ranging from 1 in. to 8 ft. have been examined and compared with air temperatures. The observed fluctuations m the soil temperatures fit closely the theoretical equation for the propagation of a simple harmonic temperature wave into the so11. The diffusivity of the sol1 has been deduced and compared with values found by other workers in other localities. The annual wave of the daily mean temperature at the surface of the soil has been deduced and compared with the annual wave of the dally mean air temperature and the differences in the means, amplitudes, and phase displacements have been discussed.


2003 ◽  
Vol 83 (1) ◽  
pp. 89-98 ◽  
Author(s):  
F. J. Larney ◽  
T. Ren ◽  
S. M. McGinn ◽  
C. W. Lindwall ◽  
R. C. Izaurralde

Soil and crop management practices and their effects on surface residue levels can modify soil temperature. Our study investigated the effect of rotation, tillage and row spacing on near-surface (0.025 m) soil temperature under winter wheat (Triticum aestivum L.) in 1993-1994 and 1994-1995. The main treatment was winter wheat rotation: continuous winter wheat (WW); winter wheat-canola (Brassica campestris L.) (WC) or winter wheat-fallow (WF)] with tillage sub-treatments of conventional tillage (CT) vs. zero tillage (ZT) and row spacing treatments of uniform row (UR) vs. paired row (PR) spacing. From fall 1993 to spring 1994, ZT was cooler than CT by 1.2°C on the WC rotation, 1.1°C on WW and 0.4°C on the WF rotation. From fall 1994 to spring 1995, the magnitude of tillage differences was lower on all three rotations with ZT being cooler than CT by 0.1–0.9°C. The magnitude of the row spacing effect on soil temperature was less than that of the tillage effect. Extreme differences in soil temperature due to tillage were generally higher (1.0–4.9°C) on the WW and WC than the WF rotation (0.6–2.5°C) due to the presence of more crop residue. Results demonstrate that while ZT promotes overall cooler soils under winter wheat from fall to late spring, especially on continuously cropped (WW, WC) rotations, it also allows moderation of soil temperatures during extremely cold periods. Key words: Soil temperature, winter wheat, rotation, tillage, row spacing


2013 ◽  
Vol 43 (3) ◽  
pp. 209-223 ◽  
Author(s):  
Jana Krčmáŕová ◽  
Hana Stredová ◽  
Radovan Pokorný ◽  
Tomáš Stdŕeda

Abstract The aim of this study was to evaluate the course of soil temperature under the winter wheat canopy and to determine relationships between soil temperature, air temperature and partly soil moisture. In addition, the aim was to describe the dependence by means of regression equations usable for phytopathological prediction models, crop development, and yield models. The measurement of soil temperatures was performed at the experimental field station ˇZabˇcice (Europe, the Czech Republic, South Moravia). The soil in the first experimental plot is Gleyic Fluvisol with 49-58% of the content particles measuring < 0.01 mm, in the second experimental plot, the soil is Haplic Chernozem with 31-32% of the content particles measuring < 0.01 mm. The course of soil temperature and its specifics were determined under winter wheat canopy during the main growth season in the course of three years. Automatic soil temperature sensors were positioned at three depths (0.05, 0.10 and 0.20 m under soil surface), air temperature sensor in 0.05 m above soil surface. Results of the correlation analysis showed that the best interrelationships between these two variables were achieved after a 3-hour delay for the soil temperature at 0.05 m, 5-hour delay for 0.10 m, and 8-hour delay for 0.20 m. After the time correction, the determination coefficient reached values from 0.75 to 0.89 for the depth of 0.05 m, 0.61 to 0.82 for the depth of 0.10 m, and 0.33 to 0.70 for the depth of 0.20 m. When using multiple regression with quadratic spacing (modeling hourly soil temperature based on the hourly near surface air temperature and hourly soil moisture in the 0.10-0.40 m profile), the difference between the measured and the model soil temperatures at 0.05 m was −2.16 to 2.37 ◦ C. The regression equation paired with alternative agrometeorological instruments enables relatively accurate modeling of soil temperatures (R2 = 0.93).


2009 ◽  
Vol 137 (7) ◽  
pp. 2263-2285 ◽  
Author(s):  
Xingang Fan

Soil temperature is a major variable in land surface models, representing soil energy status, storage, and transfer. It serves as an important factor indicating the underlying surface heating condition for weather and climate forecasts. This study utilizes the Weather Research and Forecasting (WRF) model to study the impacts of changes to the surface heating condition, derived from soil temperature observations, on regional weather simulations. Large cold biases are found in the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis project (ERA-40) soil temperatures as compared to observations. At the same time, a warm bias is found in the lower boundary assumption adopted by the Noah land surface model. In six heavy rain cases studied herein, observed soil temperatures are used to initialize the land surface model and to provide a lower boundary condition at the bottom of the model soil layer. By analyzing the impacts from the incorporation of observed soil temperatures, the following major conclusions are drawn: 1) A consistent increase in the ground heat flux is found during the day, when the observed soil temperatures are used to correct the cold bias present in ERA-40. Soil temperature changes introduced at the initial time maintain positive values but gradually decrease in magnitude with time. Sensible and latent heat fluxes and the moisture flux experience an increase during the first 6 h. 2) An increase in soil temperature impacts the air temperature through surface exchange, and near-surface moisture through evaporation. During the first two days, an increase in air temperature is seen across the region from the surface up to about 800 hPa (∼1450 m). The maximum near-surface air temperature increase is found to be, averaged over all cases, 0.5 K on the first day and 0.3 K on the second day. 3) The strength of the low-level jet is affected by the changes described above and also by the consequent changes in horizontal gradients of pressure and thermal fields. Thus, the three-dimensional circulation is affected, in addition to changes seen in the humidity and thermal fields and the locations and intensities of precipitating systems. 4) Overall results indicate that the incorporation of observed soil temperatures introduces a persistent soil heating condition that is favorable to convective development and, consequently, improves the simulation of precipitation.


Soil Research ◽  
2011 ◽  
Vol 49 (4) ◽  
pp. 305 ◽  
Author(s):  
Brian Horton ◽  
Ross Corkrey

Soil temperatures are related to air temperature and rainfall on the current day and preceding days, and this can be expressed in a non-linear relationship to provide a weighted value for the effect of air temperature or rainfall based on days lag and soil depth. The weighted minimum and maximum air temperatures and weighted rainfall can then be combined with latitude and a seasonal function to estimate soil temperature at any depth in the range 5–100 cm. The model had a root mean square deviation of 1.21–1.85°C for minimum, average, and maximum soil temperature for all weather stations in Australia (mainland and Tasmania), except for maximum soil temperature at 5 and 10 cm, where the model was less precise (3.39° and 2.52°, respectively). Data for this analysis were obtained from 32–40 Bureau of Meteorology weather stations throughout Australia and the proposed model was validated using 5-fold cross-validation.


1998 ◽  
Vol 78 (3) ◽  
pp. 493-509 ◽  
Author(s):  
Dale S. Nichols

Soil temperature strongly influences physical, chemical, and biological activities in soil. However, soil temperature data for forest landscapes are scarce. For 6 yr, weekly soil temperatures were measured at two upland and four peatland sites in north central Minnesota. One upland site supported mature aspen forest, the other supported short grass. One peatland site was forested with black spruce, one supported tall willow and alder brush, and two had open vegetation — sedges and low shrubs. Mean annual air temperature averaged 3.6 °C. Mean annual soil temperatures at 10- to 200-cm depths ranged from 5.5 to 7.6 °C among the six sites. Soils with open vegetation, whether mineral or peat, averaged about 1 °C warmer annually and from 2 to 3 °C warmer during summer than the forested soils. The tall brush peatland was cooler than all other sites due to strong groundwater inputs. The mineral soils warmed more quickly in the spring, achieved higher temperatures in the summer, and cooled more quickly in the fall than the peat soils; however, the greatest temperature differences between mineral and peat soils occurred at or below 50 cm. In the upper 20 cm, vegetation and groundwater had greater effects on temperature than did soil type (mineral or peat). Summer soil temperatures were higher, relative to air temperature, during periods of greater precipitation. This effect was minimal at upland sites but substantial in the peatlands. In spite of the persistent sub-freezing air temperatures typical of Minnesota winters, significant frost developed in the soils only in those years when severe cold weather arrived before an insulating cover of snow had accumulated. Key words: Soil temperature, vegetation effects, forest soils, groundwater, peatlands


Author(s):  
Małgorzata Kępińska-Kasprzak ◽  
Przemysław Mager

Abstract Methods of identifying dates of passing determined threshold value are of significant importance in the study of thermal growing seasons. The difficulty to determine dates of beginning and end of growing season in a given year stems from the fact that daily mean air temperature changes irregularly on a day-to-day basis often crossing the threshold value (i.e. 5°C) multiple times. The most frequently used method to identify dates of threshold value crossing is the mathematical or graphical method proposed by Gumiński in 1950 which based on monthly mean air temperature values. In the 1970s, Huculak and Makowiec presented a method using daily mean values of air temperature. It is assumed that both methods give comparative results although calculations of daily mean air temperature render more accurate results. This paper presents the comparison of these two methods. Air temperatures measurements from 1966–2005 taken at 38 weather stations located in various physiographic conditions in Poland were used.


Sign in / Sign up

Export Citation Format

Share Document